» Articles » PMID: 34451814

Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery

Overview
Publisher MDPI
Specialty Chemistry
Date 2021 Aug 28
PMID 34451814
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Visual impairment and blindness are common and seriously affect people's work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish () is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.

Citing Articles

Uncovering Novel Drugs that Restore Vision Using Orthogonal Pooling in Zebrafish.

OBrien J, Colucci P, Alvarez Y, Kennedy B Adv Exp Med Biol. 2025; 1468:491-495.

PMID: 39930243 DOI: 10.1007/978-3-031-76550-6_80.


Localization of Piezo 1 and Piezo 2 in Lateral Line System and Inner Ear of Zebrafish ().

Aragona M, Mhalhel K, Pansera L, Montalbano G, Guerrera M, Levanti M Int J Mol Sci. 2024; 25(17).

PMID: 39273152 PMC: 11395407. DOI: 10.3390/ijms25179204.


Systemic treatment with cigarette smoke extract affects zebrafish visual behaviour, intraocular vasculature morphology and outer segment phagocytosis.

Sanchez A, Colucci P, Moran A, Moya Lopez A, Colligris B, Alvarez Y Open Res Eur. 2024; 3:48.

PMID: 38283058 PMC: 10822043. DOI: 10.12688/openreseurope.15491.2.


Glaucoma Animal Models beyond Chronic IOP Increase.

Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick H Int J Mol Sci. 2024; 25(2).

PMID: 38255979 PMC: 10815097. DOI: 10.3390/ijms25020906.


Animal Models in Eye Research: Focus on Corneal Pathologies.

Loiseau A, Raiche-Marcoux G, Maranda C, Bertrand N, Boisselier E Int J Mol Sci. 2023; 24(23).

PMID: 38068983 PMC: 10706114. DOI: 10.3390/ijms242316661.


References
1.
Oura Y, Nakamura M, Takigawa T, Fukushima Y, Wakabayashi T, Tsujikawa M . High-Temperature Requirement A 1 Causes Photoreceptor Cell Death in Zebrafish Disease Models. Am J Pathol. 2018; 188(12):2729-2744. DOI: 10.1016/j.ajpath.2018.08.012. View

2.
Bujakowska K, Liu Q, Pierce E . Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol. 2017; 9(10). PMC: 5629997. DOI: 10.1101/cshperspect.a028274. View

3.
Hoshijima K, Jurynec M, Shaw D, Jacobi A, Behlke M, Grunwald D . Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Dev Cell. 2019; 51(5):645-657.e4. PMC: 6891219. DOI: 10.1016/j.devcel.2019.10.004. View

4.
Hendee K, Sorokina E, Muheisen S, Reis L, Tyler R, Markovic V . PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet. 2018; 27(10):1675-1695. PMC: 5932568. DOI: 10.1093/hmg/ddy074. View

5.
Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, Chen J . FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol. 2007; 304(2):735-44. PMC: 1876740. DOI: 10.1016/j.ydbio.2007.01.023. View