» Articles » PMID: 34449221

Wafer-Scale Synthesis and Optical Characterization of InP Nanowire Arrays for Solar Cells

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2021 Aug 27
PMID 34449221
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Nanowire solar cells have the potential to reach the same efficiencies as the world-record III-V solar cells while using a fraction of the material. For solar energy harvesting, large-area nanowire solar cells have to be processed. In this work, we demonstrate the synthesis of epitaxial InP nanowire arrays on a 2 inch wafer. We define five array areas with different nanowire diameters on the same wafer. We use a photoluminescence mapper to characterize the sample optically and compare it to a homogeneously exposed reference wafer. Both steady-state and time-resolved photoluminescence maps are used to study the material's quality. From a mapping of reflectance spectra, we simultaneously extract the diameter and length of the nanowires over the full wafer. The extracted knowledge of large-scale nanowire synthesis will be crucial for the upscaling of nanowire-based solar cells, and the demonstrated wafer-scale characterization methods will be central for quality control during manufacturing.

Citing Articles

Direct on-Chip Optical Communication between Nano Optoelectronic Devices.

Flodgren V, Das A, Sestoft J, Alcer D, Jensen T, Jeddi H ACS Photonics. 2025; 12(2):655-665.

PMID: 39989931 PMC: 11844251. DOI: 10.1021/acsphotonics.4c01375.


Composition, Optical Resonances, and Doping of InP/InGaP Nanowires for Tandem Solar Cells: a Micro-Raman Analysis.

Mediavilla I, Pura J, Hinojosa V, Galiana B, Hrachowina L, Borgstrom M ACS Nano. 2024; 18(14):10113-10123.

PMID: 38536891 PMC: 11008355. DOI: 10.1021/acsnano.3c12973.


Optical Analysis of Perovskite III-V Nanowires Interpenetrated Tandem Solar Cells.

Tirrito M, Manley P, Becker C, Unger E, Borgstrom M Nanomaterials (Basel). 2024; 14(6).

PMID: 38535666 PMC: 10974091. DOI: 10.3390/nano14060518.


Vertically Processed GaInP/InP Tandem-Junction Nanowire Solar Cells.

Alcer D, Tirrito M, Hrachowina L, Borgstrom M ACS Appl Nano Mater. 2024; 7(2):2352-2358.

PMID: 38298252 PMC: 10825819. DOI: 10.1021/acsanm.3c05909.

References
1.
Pemasiri K, Montazeri M, Gass R, Smith L, Jackson H, Yarrison-Rice J . Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett. 2009; 9(2):648-54. DOI: 10.1021/nl802997p. View

2.
Ren D, Rong Z, Somasundaram S, Azizur-Rahman K, Liang B, Huffaker D . A three-dimensional insight into correlation between carrier lifetime and surface recombination velocity for nanowires. Nanotechnology. 2018; 29(50):504003. DOI: 10.1088/1361-6528/aae365. View

3.
Anttu N, Heurlin M, Borgstrom M, Pistol M, Xu H, Samuelson L . Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples. Nano Lett. 2013; 13(6):2662-7. DOI: 10.1021/nl400811q. View

4.
Zilli A, De Luca M, Tedeschi D, Fonseka H, Miriametro A, Tan H . Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires. ACS Nano. 2015; 9(4):4277-87. DOI: 10.1021/acsnano.5b00699. View

5.
Chen Y, Kivisaari P, Pistol M, Anttu N . Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling. Nanotechnology. 2016; 27(43):435404. DOI: 10.1088/0957-4484/27/43/435404. View