» Articles » PMID: 34443910

Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays

Overview
Date 2021 Aug 27
PMID 34443910
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Ordered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials.

Citing Articles

Investigating Benzoic Acid Derivatives as Potential Atomic Layer Deposition Inhibitors Using Nanoscale Infrared Spectroscopy.

Satyarthy S, Cheng M, Ghosh A Nanomaterials (Basel). 2025; 15(3).

PMID: 39940140 PMC: 11821111. DOI: 10.3390/nano15030164.


Polarization-controlled anisotropy in hybrid plasmonic nanoparticles.

Wang X, Dou Z, Zhang C, Deng F, Lu X, Wang S Nanophotonics. 2024; 11(5):1003-1009.

PMID: 39634475 PMC: 11501720. DOI: 10.1515/nanoph-2021-0691.


Shape and Composition Evolution in an Alloy Core-Shell Nanowire Heterostructure Induced by Adatom Diffusion.

Han D, Tang W, Sun N, Ye H, Chai H, Wang M Nanomaterials (Basel). 2023; 13(11).

PMID: 37299635 PMC: 10254845. DOI: 10.3390/nano13111732.


Quasi-Freeform Metasurfaces for Wide-Angle Beam Deflecting and Splitting.

Zhang Q, Liu D, Zhou S, Chen G, Su J, Sun L Nanomaterials (Basel). 2023; 13(7).

PMID: 37049250 PMC: 10097112. DOI: 10.3390/nano13071156.


Polarization Control in Integrated Silicon Waveguides Using Semiconductor Nanowires.

Kaplan A, Vitali V, Demontis V, Rossella F, Fontana A, Cornia S Nanomaterials (Basel). 2022; 12(14).

PMID: 35889662 PMC: 9320397. DOI: 10.3390/nano12142438.


References
1.
Li D, Lan C, Manikandan A, Yip S, Zhou Z, Liang X . Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun. 2019; 10(1):1664. PMC: 6458123. DOI: 10.1038/s41467-019-09606-y. View

2.
Gomes U, Ercolani D, Zannier V, David J, Gemmi M, Beltram F . Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon. Nanotechnology. 2016; 27(25):255601. DOI: 10.1088/0957-4484/27/25/255601. View

3.
Salary M, Mosallaei H . Electrically Tunable Metamaterials Based on Multimaterial Nanowires Incorporating Transparent Conductive Oxides. Sci Rep. 2017; 7(1):10055. PMC: 5577228. DOI: 10.1038/s41598-017-09523-4. View

4.
Demontis V, Rocci M, Donarelli M, Maiti R, Zannier V, Beltram F . Conductometric Sensing with Individual InAs Nanowires. Sensors (Basel). 2019; 19(13). PMC: 6651090. DOI: 10.3390/s19132994. View

5.
Barrigon E, Heurlin M, Bi Z, Monemar B, Samuelson L . Synthesis and Applications of III-V Nanowires. Chem Rev. 2019; 119(15):9170-9220. DOI: 10.1021/acs.chemrev.9b00075. View