6.
Halperin D
. Poverty, production, and health: inhibition of erythrocyte cholinesterase via occupational exposure to organophosphate insecticides in Chiapas, Mexico. Arch Environ Health. 1998; 53(1):29-35.
DOI: 10.1080/00039899809605686.
View
7.
Westlake G, Bunyan P, Martin A, Stanley P, Steed L
. Carbamate poisoning. Effects of selected carbamate pesticides on plasma enzymes and brain esterases of Japanese quail (Coturnix coturnix japonica). J Agric Food Chem. 1981; 29(4):779-85.
DOI: 10.1021/jf00106a022.
View
8.
Gallagher S
. Quantitation of nucleic acids with absorption spectroscopy. Curr Protoc Protein Sci. 2008; Appendix 4:Appendix 4K.
DOI: 10.1002/0471140864.psa04ks13.
View
9.
Lee W, Huang J, Shyur L
. Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxid Med Cell Longev. 2014; 2013:925804.
PMC: 3886269.
DOI: 10.1155/2013/925804.
View
10.
Fossi M, Leonzio C, Massi A, Lari L, Casini S
. Serum esterase inhibition in birds: a nondestructive biomarker to assess organophosphorus and carbamate contamination. Arch Environ Contam Toxicol. 1992; 23(1):99-104.
DOI: 10.1007/BF00226001.
View
11.
Gomez-Ramirez P, Martinez-Lopez E, Maria-Mojica P, Leon-Ortega M, Garcia-Fernandez A
. Blood lead levels and δ-ALAD inhibition in nestlings of Eurasian Eagle Owl (Bubo bubo) to assess lead exposure associated to an abandoned mining area. Ecotoxicology. 2010; 20(1):131-8.
DOI: 10.1007/s10646-010-0563-3.
View
12.
Morcillo S, Perego M, Vizuete J, Caloni F, Cortinovis C, Fidalgo L
. Reference intervals for B-esterases in gull, Larus michahellis (Nauman, 1840) from Northwest Spain: influence of age, gender, and tissue. Environ Sci Pollut Res Int. 2017; 25(2):1533-1542.
DOI: 10.1007/s11356-017-0630-x.
View
13.
Aleksic J, Stojanovic D, Banovic B, Jancic R
. A simple and efficient DNA isolation method for Salvia officinalis. Biochem Genet. 2012; 50(11-12):881-92.
DOI: 10.1007/s10528-012-9528-y.
View
14.
Couto N, Wood J, Barber J
. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016; 95:27-42.
DOI: 10.1016/j.freeradbiomed.2016.02.028.
View
15.
Hoffman D, Spalding M, Frederick P
. Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environ Toxicol Chem. 2006; 24(12):3078-84.
DOI: 10.1897/04-570.1.
View
16.
Janssens E, Dauwe T, Bervoets L, Eens M
. Inter- and intraclutch variability in heavy metals in feathers of great tit nestlings ( Parus major) along a pollution gradient. Arch Environ Contam Toxicol. 2002; 43(3):323-9.
DOI: 10.1007/s00244-002-0138-2.
View
17.
Bottini C, MacDougall-Shackleton S, Branfireun B, Hobson K
. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci Total Environ. 2021; 775:145739.
DOI: 10.1016/j.scitotenv.2021.145739.
View
18.
STEDMAN E
. The relative choline-esterase activities of serum and corpuscles from the blood of certain species. Biochem J. 1935; 29(9):2107-11.
PMC: 1266733.
DOI: 10.1042/bj0292107.
View
19.
Rainio M, Kanerva M, Salminen J, Nikinmaa M, Eeva T
. Oxidative status in nestlings of three small passerine species exposed to metal pollution. Sci Total Environ. 2013; 454-455:466-73.
DOI: 10.1016/j.scitotenv.2013.03.033.
View
20.
Redinbo M, Potter P
. Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today. 2005; 10(5):313-25.
DOI: 10.1016/S1359-6446(05)03383-0.
View