» Articles » PMID: 34430799

Dose Response of Biochar and Wood Vinegar on in Vitro Batch Culture Ruminal Fermentation Using Contrasting Feed Substrates

Overview
Journal Transl Anim Sci
Date 2021 Aug 25
PMID 34430799
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

Within Australia, approximately 6.4% of total greenhouse gas emissions are from animal methane (CH) derived from enteric fermentation. Mitigation of ruminant CH is a key concept in support of sustainable agriculture production; dietary manipulations a viable strategy to lower CH release during enteric fermentation. In order to determine the effects of dose response of biochar and wood vinegar supplementation on fermentation parameters and CH production, this study utilized in vitro batch culture incubations. It is hypothesized that the addition of either biochar or wood vinegar will successfully reduce enteric CH emissions without negative modification of other fermentation parameters. Three feed substrates (vegetable mixed ration, maize silage, and winter pasture) were separated into treatments containing either biochar at 0%, 0.5%, 1%, 2%, and 4% DM replacing substrate (w/w basis), or wood vinegar at 0%, 0.25%, 0.5%, 1%, and 2% into incubation media volume (v/v). At 6, 12, and 24 hours after inoculation, total gas volume, and methane (CH %) were measured. Volatile fatty acid (VFA) concentrations, media pH, and in vitro dry matter digestibility were measured at 24 hours. Biochar at various dosages had no effect ( > 0.05) on fermentation characteristics other than decreased in vitro dry matter digestibility (IVDMD; = 0.01) at 2% and 4% (DM basis) inclusion. Similar to biochar, dose response of wood vinegar had no effect on in vitro fermentation characteristics. However, feed substrate had major effects on all fermentation parameters ( = 0.01) where winter pasture > vegetable mixed ration > maize silage for all recorded fermentation characteristics. Biochar and wood vinegar supplementation were ineffectual in mitigating CH production or modifying fermentation characteristics, thus rejecting the initial hypothesis. These results suggest the use of biochar is not an effective tool for methane mitigation in ruminant livestock and infers that studies previously reporting success must better define the systemic mechanisms responsible for the reduction in CH.

Citing Articles

The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry-A Review.

Gama G, Pimenta A, Feijo F, de Azevedo T, de Melo R, Andrade G Animals (Basel). 2024; 14(3).

PMID: 38338024 PMC: 10854697. DOI: 10.3390/ani14030381.

References
1.
Watarai S, Tana , Koiwa M . Feeding activated charcoal from bark containing wood vinegar liquid (nekka-rich) is effective as treatment for cryptosporidiosis in calves. J Dairy Sci. 2008; 91(4):1458-63. DOI: 10.3168/jds.2007-0406. View

2.
Saleem A, Ribeiro Jr G, Yang W, Ran T, Beauchemin K, McGeough E . Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. J Anim Sci. 2018; 96(8):3121-3130. PMC: 6095387. DOI: 10.1093/jas/sky204. View

3.
Yu L, Yuan Y, Tang J, Wang Y, Zhou S . Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep. 2015; 5:16221. PMC: 4655402. DOI: 10.1038/srep16221. View

4.
Chowdhury M, de Neergaard A, Stoumann Jensen L . Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere. 2013; 97:16-25. DOI: 10.1016/j.chemosphere.2013.10.030. View

5.
Hua D, Fan Q, Zhao Y, Xu H, Chen L, Li Y . Comparison of methanogenic potential of wood vinegar with gradient loads in batch and continuous anaerobic digestion and microbial community analysis. Sci Total Environ. 2020; 739:139943. DOI: 10.1016/j.scitotenv.2020.139943. View