» Articles » PMID: 34390643

Molecular Mechanism of Prestin Electromotive Signal Amplification

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2021 Aug 14
PMID 34390643
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.

Citing Articles

The enigmatic SLC26A6 multifunctional anion transporter: recent advances in structure-function relationship, pathophysiological significance and novel pharmacological inhibitors.

Seidler U Front Pharmacol. 2025; 15:1536864.

PMID: 39949394 PMC: 11821980. DOI: 10.3389/fphar.2024.1536864.


Expression and functional characterization of His-tagged prestin in Chinese hamster ovary cells.

Motoo R, Sugimoto H, Donjo Y, Yoshizaki T, Murakoshi M PLoS One. 2024; 19(12):e0314517.

PMID: 39621656 PMC: 11611077. DOI: 10.1371/journal.pone.0314517.


MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss.

Jung J, Joo S, Min H, Roh J, Kim K, Ma J Exp Mol Med. 2024; 56(11):2423-2435.

PMID: 39482536 PMC: 11612406. DOI: 10.1038/s12276-024-01338-4.


CRISPR/Cas9-mediated exon skipping to restore premature translation termination in a DFNB4 mouse model.

Huang C, Tsai Y, Cheng Y, Wu P, Chuang Y, Huang P Gene Ther. 2024; 31(11-12):531-540.

PMID: 39232211 DOI: 10.1038/s41434-024-00483-9.


Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels.

Shan Y, Zhang M, Chen M, Guo X, Li Y, Zhang M Nat Commun. 2024; 15(1):7504.

PMID: 39209849 PMC: 11362595. DOI: 10.1038/s41467-024-51800-0.


References
1.
Liu P, Dehez F, Cai W, Chipot C . A Toolkit for the Analysis of Free-Energy Perturbation Calculations. J Chem Theory Comput. 2015; 8(8):2606-16. DOI: 10.1021/ct300242f. View

2.
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E . Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16):1781-802. PMC: 2486339. DOI: 10.1002/jcc.20289. View

3.
Santos-Sacchi J, Song L . Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5. Biophys J. 2016; 110(11):2551-2561. PMC: 4906268. DOI: 10.1016/j.bpj.2016.05.002. View

4.
Ashmore J . A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol. 1987; 388:323-47. PMC: 1192551. DOI: 10.1113/jphysiol.1987.sp016617. View

5.
Fang J, Izumi C, Iwasa K . Sensitivity of prestin-based membrane motor to membrane thickness. Biophys J. 2010; 98(12):2831-8. PMC: 2884244. DOI: 10.1016/j.bpj.2010.03.034. View