» Articles » PMID: 34389534

How Social Learning Amplifies Moral Outrage Expression in Online Social Networks

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Aug 14
PMID 34389534
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Moral outrage shapes fundamental aspects of social life and is now widespread in online social networks. Here, we show how social learning processes amplify online moral outrage expressions over time. In two preregistered observational studies on Twitter (7331 users and 12.7 million total tweets) and two preregistered behavioral experiments ( = 240), we find that positive social feedback for outrage expressions increases the likelihood of future outrage expressions, consistent with principles of reinforcement learning. In addition, users conform their outrage expressions to the expressive norms of their social networks, suggesting norm learning also guides online outrage expressions. Norm learning overshadows reinforcement learning when normative information is readily observable: in ideologically extreme networks, where outrage expression is more common, users are less sensitive to social feedback when deciding whether to express outrage. Our findings highlight how platform design interacts with human learning mechanisms to affect moral discourse in digital public spaces.

Citing Articles

A research agenda for encouraging prosocial behaviour on social media.

Dorr T, Nagpal T, Watts D, Bail C Nat Hum Behav. 2025; .

PMID: 40065138 DOI: 10.1038/s41562-025-02102-y.


Public Health Messaging on Twitter During the COVID-19 Pandemic: Observational Study.

Rao A, Sabri N, Guo S, Raschid L, Lerman K J Med Internet Res. 2025; 27:e63910.

PMID: 39908546 PMC: 11840374. DOI: 10.2196/63910.


Social learning preserves both useful and useless theories by canalizing learners' exploration.

Derex M, Bonnefon J, Boyd R, McElreath R, Mesoudi A Proc Biol Sci. 2025; 292(2039):20242499.

PMID: 39876719 PMC: 11775619. DOI: 10.1098/rspb.2024.2499.


Orthodontic practice marketing: The orthodontist and laypeople's perspective.

Jasim E, Alnuaimy N, Abid M, Dziedzic A J Orthod Sci. 2025; 13:47.

PMID: 39758113 PMC: 11698251. DOI: 10.4103/jos.jos_37_24.


Distributed opinion competition scheme with gradient-based neural network in social networks.

Feng Z, Xing Y, Wang G Sci Rep. 2024; 14(1):30883.

PMID: 39730650 PMC: 11681056. DOI: 10.1038/s41598-024-81857-2.


References
1.
Garten J, Kennedy B, Sagae K, Dehghani M . Measuring the importance of context when modeling language comprehension. Behav Res Methods. 2019; 51(2):480-492. DOI: 10.3758/s13428-019-01200-w. View

2.
Brescoll V, Uhlmann E . Can an angry woman get ahead? Status conferral, gender, and expression of emotion in the workplace. Psychol Sci. 2008; 19(3):268-75. DOI: 10.1111/j.1467-9280.2008.02079.x. View

3.
Glimcher P . Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci U S A. 2011; 108 Suppl 3:15647-54. PMC: 3176615. DOI: 10.1073/pnas.1014269108. View

4.
Pessiglione M, Seymour B, Flandin G, Dolan R, Frith C . Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006; 442(7106):1042-5. PMC: 2636869. DOI: 10.1038/nature05051. View

5.
Pan W . Akaike's information criterion in generalized estimating equations. Biometrics. 2001; 57(1):120-5. DOI: 10.1111/j.0006-341x.2001.00120.x. View