» Articles » PMID: 34387400

Room-Temperature Halide Perovskite Field-Effect Transistors by Ion Transport Mitigation

Overview
Journal Adv Mater
Date 2021 Aug 13
PMID 34387400
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Solution-processed halide perovskites have emerged as excellent optoelectronic materials for applications in photovoltaic solar cells and light-emitting diodes. However, the presence of mobile ions in the material hinders the development of perovskite field-effect transistors (FETs) due to screening of the gate potential in the nearby perovskite channel, and the resulting impediment to achieving gate modulation of an electronic current at room temperature. Here, room-temperature operation is demonstrated in cesium lead tribromide (CsPbBr ) perovskite-based FETs using an auxiliary ferroelectric gate of poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)], to electrostatically fixate the mobile ions. The large interfacial polarization of the ferroelectric gate attracts the mobile ions away from the main nonferroelectric gate interface, thereby enabling modulation of the electronic current through the channel by the main gate. This strategy allows for realization of the p-type CsPbBr channel and revealing the thermally activated nature of the hole charge transport. The proposed strategy is generic and can be applied for regulating ions in a variety of ionic-electronic mixed semiconductors.

Citing Articles

Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells.

Xu C, Hang P, Kan C, Guo X, Song X, Xu C Nat Commun. 2025; 16(1):835.

PMID: 39828761 PMC: 11743605. DOI: 10.1038/s41467-025-56182-5.


All-Inorganic CsPbBr Perovskite Nanocrystals Synthesized with Olive Oil and Oleylamine at Room Temperature.

Welyab G, Abebe M, Mani D, Thankappan A, Thomas S, Aga F Micromachines (Basel). 2023; 14(7).

PMID: 37512642 PMC: 10383321. DOI: 10.3390/mi14071332.


Effects of drying time on the formation of merged and soft MAPbI grains and their photovoltaic responses.

Chandel A, Ke Q, Chiang S, Cheng H, Chang S Nanoscale Adv. 2023; 5(8):2190-2198.

PMID: 37056629 PMC: 10089098. DOI: 10.1039/d2na00929c.


Ferroelectric Wide-Bandgap Metal Halide Perovskite Field-Effect Transistors: Toward Transparent Electronics.

Xia J, Qiu X, Liu Y, Chen P, Guo J, Wei H Adv Sci (Weinh). 2023; 10(10):e2300133.

PMID: 36703612 PMC: 10074105. DOI: 10.1002/advs.202300133.


Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN from ab initio Lattice Dynamics.

Tong Z, Zhang Y, Pecchia A, Yam C, Zhou L, Dumitrica T Adv Sci (Weinh). 2023; 10(9):e2205934.

PMID: 36683244 PMC: 10037690. DOI: 10.1002/advs.202205934.


References
1.
Eames C, Frost J, Barnes P, ORegan B, Walsh A, Islam M . Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 2015; 6:7497. PMC: 4491179. DOI: 10.1038/ncomms8497. View

2.
Liu N, Yam C . First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys Chem Chem Phys. 2018; 20(10):6800-6804. DOI: 10.1039/c8cp00280k. View

3.
Jeong B, Han H, Kim H, Choi W, Park Y, Park C . Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS Nano. 2020; 14(2):1645-1655. DOI: 10.1021/acsnano.9b06980. View

4.
Kang J, Wang L . High Defect Tolerance in Lead Halide Perovskite CsPbBr. J Phys Chem Lett. 2017; 8(2):489-493. DOI: 10.1021/acs.jpclett.6b02800. View

5.
Yusoff A, Kim H, Li X, Kim J, Jang J, Nazeeruddin M . Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters. Adv Mater. 2016; 29(8). DOI: 10.1002/adma.201602940. View