» Articles » PMID: 34386874

The Genomics of Plant Satellite DNA

Overview
Date 2021 Aug 13
PMID 34386874
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.

Citing Articles

Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare.

Galvez-Galvan A, Barea L, Garrido-Ramos M, Prieto P Plant Mol Biol. 2024; 114(5):108.

PMID: 39356367 PMC: 11447152. DOI: 10.1007/s11103-024-01501-5.


Satellitome Analysis of (Coleoptera): Revealing Centromeric Turnover and Potential Chromosome Rearrangements in a Comparative Interspecific Study.

Mora P, Rico-Porras J, Palomeque T, Montiel E, Pita S, Cabral-de-Mello D Int J Mol Sci. 2024; 25(17).

PMID: 39273162 PMC: 11394905. DOI: 10.3390/ijms25179214.


The highly dynamic satellitomes of cultivated wheat species.

Galvez-Galvan A, Garrido-Ramos M, Prieto P Ann Bot. 2024; 134(6):975-992.

PMID: 39212622 PMC: 11687632. DOI: 10.1093/aob/mcae132.


Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia).

Sales-Oliveira V, Dos Santos R, Goes C, Calegari R, Garrido-Ramos M, Altmanova M BMC Biol. 2024; 22(1):47.

PMID: 38413947 PMC: 10900743. DOI: 10.1186/s12915-024-01847-8.


Bread wheat satellitome: a complex scenario in a huge genome.

Galvez-Galvan A, Garrido-Ramos M, Prieto P Plant Mol Biol. 2024; 114(1):8.

PMID: 38291213 PMC: 10827815. DOI: 10.1007/s11103-023-01404-x.


References
1.
Albert P, Gao Z, Danilova T, Birchler J . Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genome Res. 2010; 129(1-3):6-16. DOI: 10.1159/000314342. View

2.
Alfenito M, Birchler J . Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993; 135(2):589-97. PMC: 1205658. DOI: 10.1093/genetics/135.2.589. View

3.
Almeida C, Fonseca A, dos Santos K, Mosiolek M, Pedrosa-Harand A . Contrasting evolution of a satellite DNA and its ancestral IGS rDNA in Phaseolus (Fabaceae). Genome. 2012; 55(9):683-9. DOI: 10.1139/g2012-059. View

4.
Ambrozova K, Mandakova T, Bures P, Neumann P, Leitch I, Koblizkova A . Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot. 2010; 107(2):255-68. PMC: 3025733. DOI: 10.1093/aob/mcq235. View

5.
Ananiev E, Phillips R, Rines H . A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons?. Proc Natl Acad Sci U S A. 1998; 95(18):10785-90. PMC: 27973. DOI: 10.1073/pnas.95.18.10785. View