» Articles » PMID: 34386870

Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution

Overview
Date 2021 Aug 13
PMID 34386870
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.

Citing Articles

Alpha Satellite DNA in Targeted Drug Therapy for Prostate Cancer.

Feliciello I, Ugarkovic D Int J Mol Sci. 2023; 24(21).

PMID: 37958565 PMC: 10648476. DOI: 10.3390/ijms242115585.


Analysis in genome illuminates the satellite DNA content in a frog from the Brazilian Atlantic forest.

da Silva M, Gazoni T, Haddad C, Parise-Maltempi P Front Genet. 2023; 14:1101397.

PMID: 37065500 PMC: 10095563. DOI: 10.3389/fgene.2023.1101397.


In Silico Identification and Characterization of Satellite DNAs in 23 Species from the Group.

Silva B, Picorelli A, Kuhn G Genes (Basel). 2023; 14(2).

PMID: 36833227 PMC: 9957191. DOI: 10.3390/genes14020300.


Satellite DNAs in Health and Disease.

Ugarkovic D, Sermek A, Ljubic S, Feliciello I Genes (Basel). 2022; 13(7).

PMID: 35885937 PMC: 9324158. DOI: 10.3390/genes13071154.


In-Depth Satellitome Analyses of 37 Drosophila Species Illuminate Repetitive DNA Evolution in the Drosophila Genus.

Lima L, Ruiz-Ruano F Genome Biol Evol. 2022; 14(5).

PMID: 35511582 PMC: 9113345. DOI: 10.1093/gbe/evac064.

References
1.
Abad J, CARMENA M, Baars S, Saunders R, Glover D, Ludena P . Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1992; 89(10):4663-7. PMC: 49143. DOI: 10.1073/pnas.89.10.4663. View

2.
Akera T, Trimm E, Lampson M . Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell. 2019; 178(5):1132-1144.e10. PMC: 6731994. DOI: 10.1016/j.cell.2019.07.001. View

3.
Alekseyenko A, Larschan E, Lai W, Park P, Kuroda M . High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 2006; 20(7):848-57. PMC: 1472287. DOI: 10.1101/gad.1400206. View

4.
Alekseyenko A, Peng S, Larschan E, Gorchakov A, Lee O, Kharchenko P . A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell. 2008; 134(4):599-609. PMC: 2613042. DOI: 10.1016/j.cell.2008.06.033. View

5.
Alekseyenko A, Gorchakov A, Zee B, Fuchs S, Kharchenko P, Kuroda M . Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev. 2014; 28(13):1445-60. PMC: 4083088. DOI: 10.1101/gad.241950.114. View