» Articles » PMID: 34385486

High-temperature Superconductor of Sodalite-like Clathrate Hafnium Hexahydride

Overview
Journal Sci Rep
Specialty Science
Date 2021 Aug 13
PMID 34385486
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Hafnium hydrogen compounds have recently become the vibrant materials for structural prediction at high pressure, from their high potential candidate for high-temperature superconductors. In this work, we predict [Formula: see text] by exploiting the evolutionary searching. A high-pressure phase adopts a sodalite-like clathrate structure, showing the body-centered cubic structure with a space group of [Formula: see text]. The first-principles calculations have been used, including the zero-point energy, to investigate the probable structures up to 600 GPa, and find that the [Formula: see text] structure is thermodynamically and dynamically stable. This remarkable result of the [Formula: see text] structure shows the van Hove singularity at the Fermi level by determining the density of states. We calculate a superconducting transition temperature ([Formula: see text]) using Allen-Dynes equation and demonstrated that it exhibits superconductivity under high pressure with relatively high-[Formula: see text] of 132 K.

Citing Articles

Structural Features, Chemical Diversity, and Physical Properties of Microporous Sodalite-Type Materials: A Review.

Chukanov N, Aksenov S Int J Mol Sci. 2024; 25(18).

PMID: 39337703 PMC: 11432373. DOI: 10.3390/ijms251810218.


Prediction of potential high-temperature superconductivity in ternary Y-Hf-H compounds under high pressure.

Wang Y, Jin Y, Yang F, Zhang J, Zhang C, Kuang F Sci Rep. 2024; 14(1):17670.

PMID: 39085479 PMC: 11291659. DOI: 10.1038/s41598-024-68697-w.


Structural and electronic properties of clathrate-like hydride: MH and MH (M = Sc, Y, La).

Luo Y, Gao J, Liu Q, Fan D, Liu Z J Mol Model. 2024; 30(7):229.

PMID: 38918212 DOI: 10.1007/s00894-024-06034-8.


Hydrothermal synthesis of multi-cationic high-entropy layered double hydroxides.

Knorpp A, Zawisza A, Huangfu S, Borzi A, Clark A, Kata D RSC Adv. 2022; 12(40):26362-26371.

PMID: 36275118 PMC: 9475562. DOI: 10.1039/d2ra05435c.


Superconducting Gap of Pressure Stabilized (AlZr)H from Anisotropic Migdal-Eliashberg Theory.

Tsuppayakorn-Aek P, Ahuja R, Bovornratanaraks T, Luo W ACS Omega. 2022; 7(32):28190-28197.

PMID: 35990471 PMC: 9386819. DOI: 10.1021/acsomega.2c02447.

References
1.
Peng F, Sun Y, Pickard C, Needs R, Wu Q, Ma Y . Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. Phys Rev Lett. 2017; 119(10):107001. DOI: 10.1103/PhysRevLett.119.107001. View

2.
Errea I, Belli F, Monacelli L, Sanna A, Koretsune T, Tadano T . Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature. 2020; 578(7793):66-69. DOI: 10.1038/s41586-020-1955-z. View

3.
Oganov A, Glass C . Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys. 2006; 124(24):244704. DOI: 10.1063/1.2210932. View

4.
Deringer V, Tchougreeff A, Dronskowski R . Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A. 2011; 115(21):5461-6. DOI: 10.1021/jp202489s. View

5.
Maintz S, Deringer V, Tchougreeff A, Dronskowski R . LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J Comput Chem. 2016; 37(11):1030-5. PMC: 5067632. DOI: 10.1002/jcc.24300. View