» Articles » PMID: 34376651

The Developing Mouse Coronal Suture at Single-cell Resolution

Abstract

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.

Citing Articles

On the Maxillofacial Development of Mice, Mus musculus.

Higashiyama H, Kuroda S, Iwase A, Irie N, Kurihara H J Morphol. 2025; 286(3):e70032.

PMID: 40022452 PMC: 11871421. DOI: 10.1002/jmor.70032.


FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development.

Bobzin L, Nickle A, Ko S, Ince M, Huang A, Bhojwani A Development. 2025; 152(2).

PMID: 39775862 PMC: 11829768. DOI: 10.1242/dev.204264.


A multi-omic atlas of human embryonic skeletal development.

To K, Fei L, Pett J, Roberts K, Blain R, Polanski K Nature. 2024; 635(8039):657-667.

PMID: 39567793 PMC: 11578895. DOI: 10.1038/s41586-024-08189-z.


Regulatory elements in (7q21.3) locus contribute to genetic control of coronal nonsyndromic craniosynostosis and bone density-related traits.

Nicoletti P, Zafer S, Matok L, Irron I, Patrick M, Haklai R Genet Med Open. 2024; 2.

PMID: 39345948 PMC: 11434253. DOI: 10.1016/j.gimo.2024.101851.


Advances and controversies in meningeal biology.

Betsholtz C, Engelhardt B, Koh G, McDonald D, Proulx S, Siegenthaler J Nat Neurosci. 2024; 27(11):2056-2072.

PMID: 39333784 PMC: 11862877. DOI: 10.1038/s41593-024-01701-8.


References
1.
Rice D . Developmental anatomy of craniofacial sutures. Front Oral Biol. 2008; 12:1-21. DOI: 10.1159/000115028. View

2.
Dasgupta K, Jeong J . Developmental biology of the meninges. Genesis. 2019; 57(5):e23288. PMC: 6520190. DOI: 10.1002/dvg.23288. View

3.
Haydont V, Neiveyans V, Perez P, Busson E, Lataillade J, Asselineau D . Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling. Cells. 2020; 9(2). PMC: 7072412. DOI: 10.3390/cells9020368. View

4.
Holmes G, Rothschild G, Roy U, Deng C, Mansukhani A, Basilico C . Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol. 2009; 328(2):273-84. PMC: 2674120. DOI: 10.1016/j.ydbio.2009.01.026. View

5.
Wilk K, Yeh S, Mortensen L, Ghaffarigarakani S, Lombardo C, Bassir S . Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration. Stem Cell Reports. 2017; 8(4):933-946. PMC: 5390237. DOI: 10.1016/j.stemcr.2017.03.002. View