» Articles » PMID: 34366612

Role of Artificial Intelligence in Multidisciplinary Imaging Diagnosis of Gastrointestinal Diseases

Overview
Specialty Gastroenterology
Date 2021 Aug 9
PMID 34366612
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The use of artificial intelligence-based tools is regarded as a promising approach to increase clinical efficiency in diagnostic imaging, improve the interpretability of results, and support decision-making for the detection and prevention of diseases. Radiology, endoscopy and pathology images are suitable for deep-learning analysis, potentially changing the way care is delivered in gastroenterology. The aim of this review is to examine the key aspects of different neural network architectures used for the evaluation of gastrointestinal conditions, by discussing how different models behave in critical tasks, such as lesion detection or characterization ( the distinction between benign and malignant lesions of the esophagus, the stomach and the colon). To this end, we provide an overview on recent achievements and future prospects in deep learning methods applied to the analysis of radiology, endoscopy and histologic whole-slide images of the gastrointestinal tract.

Citing Articles

Artificial intelligence applications in gastroenterology: steps ahead.

Popa S, Ismaiel A Med Pharm Rep. 2024; 94(Suppl No 3):S56-S59.

PMID: 38912404 PMC: 11188025. DOI: 10.15386/mpr-2513.


Textbook Neoadjuvant Outcome-Novel Composite Measure of Oncological Outcomes among Gastric Cancer Patients Undergoing Multimodal Treatment.

Pelc Z, Sedlak K, Lesniewska M, Mielniczek K, Chawrylak K, Skorzewska M Cancers (Basel). 2024; 16(9).

PMID: 38730672 PMC: 11083243. DOI: 10.3390/cancers16091721.


Advancements in Barrett's esophagus detection: The role of artificial intelligence and its implications.

Massironi S World J Gastroenterol. 2024; 30(11):1494-1496.

PMID: 38617459 PMC: 11008413. DOI: 10.3748/wjg.v30.i11.1494.


Artificial intelligence in gastrointestinal endoscopy: a comprehensive review.

Ali H, Muzammil M, Dahiya D, Ali F, Yasin S, Hanif W Ann Gastroenterol. 2024; 37(2):133-141.

PMID: 38481787 PMC: 10927620. DOI: 10.20524/aog.2024.0861.


Artificial intelligence applications in computed tomography in gastric cancer: a narrative review.

Ma T, Wang H, Ye Z Transl Cancer Res. 2023; 12(9):2379-2392.

PMID: 37859746 PMC: 10583011. DOI: 10.21037/tcr-23-201.


References
1.
Liu S, Zheng H, Zhang Y, Chen L, Guan W, Guan Y . Whole-volume apparent diffusion coefficient-based entropy parameters for assessment of gastric cancer aggressiveness. J Magn Reson Imaging. 2017; 47(1):168-175. DOI: 10.1002/jmri.25752. View

2.
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S . Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2018; 2(4):230-243. PMC: 5829945. DOI: 10.1136/svn-2017-000101. View

3.
Wang P, Berzin T, Glissen Brown J, Bharadwaj S, Becq A, Xiao X . Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019; 68(10):1813-1819. PMC: 6839720. DOI: 10.1136/gutjnl-2018-317500. View

4.
Ding L, Liu G, Zhao B, Zhou Y, Li S, Zhang Z . Artificial intelligence system of faster region-based convolutional neural network surpassing senior radiologists in evaluation of metastatic lymph nodes of rectal cancer. Chin Med J (Engl). 2019; 132(4):379-387. PMC: 6595714. DOI: 10.1097/CM9.0000000000000095. View

5.
Luo Y, Zhang Y, Liu M, Lai Y, Liu P, Wang Z . Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: a Prospective, Randomized Cohort Study. J Gastrointest Surg. 2020; 25(8):2011-2018. PMC: 8321985. DOI: 10.1007/s11605-020-04802-4. View