» Articles » PMID: 34362891

Timing the Evolution of Antioxidant Enzymes in Cyanobacteria

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Aug 7
PMID 34362891
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

The ancestors of cyanobacteria generated Earth's first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300-3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria's invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.

Citing Articles

A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism.

Elling F, Pierrel F, Chobert S, Abby S, Evans T, Reveillard A Proc Natl Acad Sci U S A. 2025; 122(8):e2421994122.

PMID: 39977315 PMC: 11874023. DOI: 10.1073/pnas.2421994122.


Archaean green-light environments drove the evolution of cyanobacteria's light-harvesting system.

Matsuo T, Ito-Miwa K, Hoshino Y, Fujii Y, Kanno S, Fujimoto K Nat Ecol Evol. 2025; .

PMID: 39966498 DOI: 10.1038/s41559-025-02637-3.


Review of cancer cell volatile organic compounds: their metabolism and evolution.

Furuhashi T, Toda K, Weckwerth W Front Mol Biosci. 2025; 11():1499104.

PMID: 39840075 PMC: 11747368. DOI: 10.3389/fmolb.2024.1499104.


The mitochondrial and cytoplasmic superoxide anion imbalance trigger the expression of certain cellular aging markers in HaCaT keratinocytes.

de Afonso Bonotto N, da Cruz I, Turra B, Escher A, Dos Santos Trombini F, Zimmermann J Biogerontology. 2024; 26(1):31.

PMID: 39725767 DOI: 10.1007/s10522-024-10168-w.


Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere.

Tamanna S, Boden J, Kaiser K, Wannicke N, Horing J, Sanchez-Baracaldo P Geobiology. 2024; 22(6):e70005.

PMID: 39665522 PMC: 11636452. DOI: 10.1111/gbi.70005.


References
1.
Kump L . The rise of atmospheric oxygen. Nature. 2008; 451(7176):277-8. DOI: 10.1038/nature06587. View

2.
Lyons T, Reinhard C, Planavsky N . The rise of oxygen in Earth's early ocean and atmosphere. Nature. 2014; 506(7488):307-15. DOI: 10.1038/nature13068. View

3.
Oliver T, Sanchez-Baracaldo P, Larkum A, Rutherford A, Cardona T . Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochim Biophys Acta Bioenerg. 2021; 1862(6):148400. PMC: 8047818. DOI: 10.1016/j.bbabio.2021.148400. View

4.
Konhauser K, Lalonde S, Planavsky N, Pecoits E, Lyons T, Mojzsis S . Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature. 2011; 478(7369):369-73. DOI: 10.1038/nature10511. View

5.
Warke M, Di Rocco T, Zerkle A, Lepland A, Prave A, Martin A . The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth". Proc Natl Acad Sci U S A. 2020; 117(24):13314-13320. PMC: 7306805. DOI: 10.1073/pnas.2003090117. View