» Articles » PMID: 34349973

Tailoring Lewis/Brønsted Acid Properties of MOF Nodes Hydrothermal and Solvothermal Synthesis: Simple Approach with Exceptional Catalytic Implications

Overview
Journal Chem Sci
Specialty Chemistry
Date 2021 Aug 5
PMID 34349973
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The Lewis/Brønsted catalytic properties of the Metal-Organic Framework (MOF) nodes can be tuned by simply controlling the solvent employed in the synthetic procedure. In this work, we demonstrate that Hf-MOF-808 can be prepared from a material with a higher amount of Brønsted acid sites, modulated hydrothermal synthesis, to a material with a higher proportion of unsaturated Hf Lewis acid sites, modulated solvothermal synthesis. The Lewis/Brønsted acid properties of the resultant metallic clusters have been studied by different characterization techniques, including XAS, FTIR and NMR spectroscopies, combined with a DFT study. The different nature of the Hf-MOF-808 materials allows their application as selective catalysts in different target reactions requiring Lewis, Brønsted or Lewis-Brønsted acid pairs.

Citing Articles

Porosity Tunable Metal-Organic Framework (MOF)-Based Composites for Energy Storage Applications: Recent Progress.

Laeim H, Molahalli V, Prajongthat P, Pattanaporkratana A, Pathak G, Phettong B Polymers (Basel). 2025; 17(2).

PMID: 39861203 PMC: 11768229. DOI: 10.3390/polym17020130.


Metal-organic framework catalysed multicomponent reactions towards the synthesis of Pyrans.

Bhat S, Bhat C Heliyon. 2025; 11(1):e41439.

PMID: 39816504 PMC: 11732708. DOI: 10.1016/j.heliyon.2024.e41439.


Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation.

Farwa U, Sandhu Z, Kiran A, Raza M, Ashraf S, Gulzarab H RSC Adv. 2024; 14(50):37164-37195.

PMID: 39569125 PMC: 11578092. DOI: 10.1039/d4ra05642f.


Sequential effects of two cations on the fluorescence emission of a coordination polymer with ZnO core in node.

Sendh J, Baruah J RSC Adv. 2024; 14(43):31598-31606.

PMID: 39376515 PMC: 11457270. DOI: 10.1039/d4ra06309k.


Bifunctional MOFs in Heterogeneous Catalysis.

Natarajan S, Manna K ACS Org Inorg Au. 2024; 4(1):59-90.

PMID: 38344010 PMC: 10853920. DOI: 10.1021/acsorginorgau.3c00033.


References
1.
Jiang J, Gandara F, Zhang Y, Na K, Yaghi O, Klemperer W . Superacidity in sulfated metal-organic framework-808. J Am Chem Soc. 2014; 136(37):12844-7. DOI: 10.1021/ja507119n. View

2.
Hu Z, Nalaparaju A, Peng Y, Jiang J, Zhao D . Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal-Organic Frameworks for Optimal Carbon Dioxide Separation. Inorg Chem. 2016; 55(3):1134-41. DOI: 10.1021/acs.inorgchem.5b02312. View

3.
Bai Y, Dou Y, Xie L, Rutledge W, Li J, Zhou H . Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev. 2016; 45(8):2327-67. DOI: 10.1039/c5cs00837a. View

4.
Jiao L, Wang Y, Jiang H, Xu Q . Metal-Organic Frameworks as Platforms for Catalytic Applications. Adv Mater. 2017; 30(37):e1703663. DOI: 10.1002/adma.201703663. View

5.
Dolgopolova E, Brandt A, Ejegbavwo O, Duke A, Maddumapatabandi T, Galhenage R . Electronic Properties of Bimetallic Metal-Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. J Am Chem Soc. 2017; 139(14):5201-5209. DOI: 10.1021/jacs.7b01125. View