» Articles » PMID: 34345631

Calcitonin Gene-Related Peptide Influences Bone-Tendon Interface Healing Through Osteogenesis: Investigation in a Rabbit Partial Patellectomy Model

Overview
Specialty Orthopedics
Date 2021 Aug 4
PMID 34345631
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Calcitonin gene-related peptide (CGRP), which has been shown to play an important role in osteogenesis during fracture repair, is also widely distributed throughout the tendon and ligament. Few studies have focused on the role of CGRP in repair of the bone-tendon interface (BTI).

Purpose: To explore the effect of CGRP expression on BTI healing in a rabbit partial patellectomy model.

Study Design: Controlled laboratory study.

Methods: A total of 60 mature rabbits were subjected to a partial patellectomy and then randomly assigned to CGRP, CGRP-antagonist, and control groups. In the CGRP-antagonist group, the CGRP receptor antagonist BIBN4096BS was administered to block CGRP receptors. The patella-patellar tendon complex was harvested at 8 and 16 weeks postoperatively and subjected to radiographic, microlaser Raman spectroscopy, histologic, and biomechanical evaluation.

Results: Radiographic data showed that local CGRP expression improved the growth parameters of newly formed bone, including area and volumetric bone mineral density ( < .05 for both). Raman spectroscopy revealed that the relative bone mineral composition increased in the CGRP group compared with in the control group and the CGRP-antagonist group ( < .05 for both). Histologic testing revealed that the CGRP group demonstrated better integration, characterized by well-developed trabecular bone expansion from the residual patella and marrow cavity formation, at the 8- and 16-week time points. Mechanical testing demonstrated that the failure load, ultimate strength, and stiffness in the CGRP group were significantly higher than those in the control group ( < .05 for all), whereas these parameters in the CGRP-antagonist group were significantly lower compared with those in the control group at 16 weeks after surgery ( < .05 for all).

Conclusion: Increasing the local concentration of CGRP in the early stages of BTI healing enhanced osteogenesis in a rabbit partial patellectomy model and promoted healing of the BTI injury, whereas treatment using a CGRP antagonist had the opposite effect. However, exogenous CGRP expression did not induce novel bone remolding.

Clinical Relevance: CGRP may have potential as a new therapy for BTI injuries or may be added to postoperative regimens to facilitate healing.

Citing Articles

Predictive Neuromarker Patterns for Calcification Metaplasia in Early Tendon Healing.

Faydaver M, Festinese V, Di Giacinto O, El Khatib M, Raspa M, Scavizzi F Vet Sci. 2024; 11(9).

PMID: 39330820 PMC: 11435825. DOI: 10.3390/vetsci11090441.


Activation of CGRP receptor-mediated signaling promotes tendon-bone healing.

Zhao X, Wu G, Zhang J, Yu Z, Wang J Sci Adv. 2024; 10(10):eadg7380.

PMID: 38457499 PMC: 10923525. DOI: 10.1126/sciadv.adg7380.


Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing.

Nazzal M, Morris A, Parker R, White F, Natoli R, Kacena M Curr Osteoporos Rep. 2024; 22(1):182-192.

PMID: 38294715 PMC: 10912323. DOI: 10.1007/s11914-023-00850-2.


Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair.

Morris A, Parker R, Nazzal M, Natoli R, Fehrenbacher J, Kacena M Curr Osteoporos Rep. 2024; 22(1):193-204.

PMID: 38236511 PMC: 10912155. DOI: 10.1007/s11914-023-00846-y.


Role of the Neurologic System in Fracture Healing: An Extensive Review.

Parker R, Nazzal M, Morris A, Fehrenbacher J, White F, Kacena M Curr Osteoporos Rep. 2024; 22(1):205-216.

PMID: 38236509 PMC: 10912173. DOI: 10.1007/s11914-023-00844-0.


References
1.
Zhou Y, Zhang H, Zhang G, He Y, Zhang P, Sun Z . Calcitonin gene‑related peptide reduces Porphyromonas gingivalis LPS‑induced TNF‑α release and apoptosis in osteoblasts. Mol Med Rep. 2017; 17(2):3246-3254. DOI: 10.3892/mmr.2017.8205. View

2.
He H, Chai J, Zhang S, Ding L, Yan P, Du W . CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol Med Rep. 2016; 13(5):3977-84. DOI: 10.3892/mmr.2016.5023. View

3.
Irie K, Ozawa H, Yajima T . Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res Tech. 2002; 58(2):85-90. DOI: 10.1002/jemt.10122. View

4.
Cadosch D, Gautschi O, Thyer M, Song S, Skirving A, Filgueira L . Humoral factors enhance fracture-healing and callus formation in patients with traumatic brain injury. J Bone Joint Surg Am. 2009; 91(2):282-8. DOI: 10.2106/JBJS.G.01613. View

5.
Agout C, Berhouet J, Bouju Y, Godeneche A, Collin P, Kempf J . Clinical and anatomic results of rotator cuff repair at 10 years depend on tear type. Knee Surg Sports Traumatol Arthrosc. 2018; 26(8):2490-2497. DOI: 10.1007/s00167-018-4854-1. View