» Articles » PMID: 34341348

Toward Asleep DBS: Cortico-basal Ganglia Spectral and Coherence Activity During Interleaved Propofol/ketamine Sedation Mimics NREM/REM Sleep Activity

Overview
Date 2021 Aug 3
PMID 34341348
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Deep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson's disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.

Citing Articles

Is the Subthalamic Nucleus Sleeping Under Nitrous Oxide-Ketamine General Anesthesia?.

Baker Erdman H, Bergman H, Haya K, Glowinsky S, Warhaftig L, Leon J Eur J Neurosci. 2025; 61(5):e70039.

PMID: 40045163 PMC: 11882488. DOI: 10.1111/ejn.70039.


Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain.

Luppi A, Uhrig L, Tasserie J, Signorelli C, Stamatakis E, Destexhe A Nat Commun. 2024; 15(1):2171.

PMID: 38462641 PMC: 10925605. DOI: 10.1038/s41467-024-46382-w.


Dexmedetomidine depresses neuronal activity in the subthalamic nucleus during deep brain stimulation electrode implantation surgery.

Amlong C, Rusy D, Sanders R, Lake W, Raz A BJA Open. 2023; 3:100088.

PMID: 37588575 PMC: 10430856. DOI: 10.1016/j.bjao.2022.100088.


Spontaneous pauses in firing of external pallidum neurons are associated with exploratory behavior.

Kaplan A, Mizrahi-Kliger A, Rappel P, Iskhakova L, Fonar G, Israel Z Commun Biol. 2022; 5(1):612.

PMID: 35729350 PMC: 9213498. DOI: 10.1038/s42003-022-03553-z.


Proceedings of the Ninth Annual Deep Brain Stimulation Think Tank: Advances in Cutting Edge Technologies, Artificial Intelligence, Neuromodulation, Neuroethics, Pain, Interventional Psychiatry, Epilepsy, and Traumatic Brain Injury.

Wong J, Deuschl G, Wolke R, Bergman H, Muthuraman M, Groppa S Front Hum Neurosci. 2022; 16:813387.

PMID: 35308605 PMC: 8931265. DOI: 10.3389/fnhum.2022.813387.

References
1.
Kurdi M, Theerth K, Deva R . Ketamine: Current applications in anesthesia, pain, and critical care. Anesth Essays Res. 2015; 8(3):283-90. PMC: 4258981. DOI: 10.4103/0259-1162.143110. View

2.
Khan M, Mewes K, Gross R, Skrinjar O . Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg. 2007; 86(1):44-53. DOI: 10.1159/000108588. View

3.
Sklar G, Zukin S, Reilly T . Adverse reactions to ketamine anaesthesia. Abolition by a psychological technique. Anaesthesia. 1981; 36(2):183-7. DOI: 10.1111/j.1365-2044.1981.tb08721.x. View

4.
Kocsis B . Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biol Psychiatry. 2011; 71(11):987-95. PMC: 3276718. DOI: 10.1016/j.biopsych.2011.10.002. View

5.
Rincon-Cortes M, Grace A . Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res. 2019; 379:112367. PMC: 6948930. DOI: 10.1016/j.bbr.2019.112367. View