» Articles » PMID: 34331261

Nanomedicine-based Combination of Dexamethasone Palmitate and MCL-1 SiRNA for Synergistic Therapeutic Efficacy Against Rheumatoid Arthritis

Overview
Publisher Springer
Specialty Pharmacology
Date 2021 Jul 31
PMID 34331261
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The main aim of this research was to design a MCL-1 siRNA and dexamethasone (DEX)-loaded folate modified poly(lactide-co-glycolide) (PLGA)-based polymeric micelles with an eventual goal to improve the therapeutic outcome in the rheumatoid arthritis (RA). Polymeric micelles encapsulating the MCL-1 siRNA and DEX was successfully developed and observed to be stable. Physicochemical characteristics such as particle size and particle morphology were ideal for the systemic administration. Folate-conjugated DEX/siRNA-loaded polymeric micelles (DS-FPM) significantly lowered the MCL-1 mRNA expression compared to either DEX/siRNA-loaded polymeric micelles (DS-PM) or free siRNA in Raw264.7 cells and macrophage cells suggesting the importance of targeted nanocarriers. Most importantly, DS-FPM exhibited a greatest decrease in the hind paw volume with lowest clinical score compared to any other treated group indicating a superior anti-inflammatory activity. DS-FPM showed significantly lower levels of the TNF-α and IL-1β compared to AIA model and free groups. The folate receptor (FR)-targeting property of DS-FPM has been demonstrated to be a promising delivery platform for the effective delivery of combination therapeutics (siRNA and DEX) toward the treatment of rheumatoid arthritis.

Citing Articles

Optimized co-delivery of curcumin and methylprednisolone using polyvinyl alcohol-coated CuO nanoparticles for synergistic rheumatoid arthritis treatment.

Zarei K, Jahanbakhshi M, Nahavandi R, Emadi R Heliyon. 2024; 10(22):e40429.

PMID: 39641028 PMC: 11617928. DOI: 10.1016/j.heliyon.2024.e40429.


Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms.

Zamanian M, Zafari H, Osminina M, Skakodub A, Aboqader Al-Aouadi R, Golmohammadi M Animal Model Exp Med. 2024; 8(1):5-19.

PMID: 39627850 PMC: 11798740. DOI: 10.1002/ame2.12518.


Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges.

Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y J Nanobiotechnology. 2024; 22(1):431.

PMID: 39034407 PMC: 11265020. DOI: 10.1186/s12951-024-02670-7.


Prodrug-based nanomedicines for rheumatoid arthritis.

Li P, Wang C, Huo H, Xu C, Sun H, Wang X Discov Nano. 2024; 19(1):9.

PMID: 38180534 PMC: 10769998. DOI: 10.1186/s11671-023-03950-1.


Lipid nanocarrier targeting activated macrophages for antiretroviral therapy of HIV reservoir.

Wu D, Si M, Xue H, Tran N, Khalili K, Kaminski R Nanomedicine (Lond). 2023; 18(20):1343-1360.

PMID: 37815117 PMC: 10652294. DOI: 10.2217/nnm-2023-0120.


References
1.
Firestein G . Evolving concepts of rheumatoid arthritis. Nature. 2003; 423(6937):356-61. DOI: 10.1038/nature01661. View

2.
Bax M, Heemst J, Huizinga T, Toes R . Genetics of rheumatoid arthritis: what have we learned?. Immunogenetics. 2011; 63(8):459-66. PMC: 3132380. DOI: 10.1007/s00251-011-0528-6. View

3.
Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E . Diagnosis and classification of rheumatoid arthritis. J Autoimmun. 2014; 48-49:26-30. DOI: 10.1016/j.jaut.2014.01.027. View

4.
Smolen J, Aletaha D, McInnes I . Rheumatoid arthritis. Lancet. 2016; 388(10055):2023-2038. DOI: 10.1016/S0140-6736(16)30173-8. View

5.
Abbasi M, Mousavi M, Jamalzehi S, Alimohammadi R, Bezvan M, Mohammadi H . Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol. 2018; 234(7):10018-10031. DOI: 10.1002/jcp.27860. View