» Articles » PMID: 34327329

SpikChIP: a Novel Computational Methodology to Compare Multiple ChIP-seq Using Spike-in Chromatin

Overview
Specialty Biology
Date 2021 Jul 30
PMID 34327329
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In order to evaluate cell- and disease-specific changes in the interacting strength of chromatin targets, ChIP-seq signal across multiple conditions must undergo robust normalization. However, this is not possible using the standard ChIP-seq scheme, which lacks a reference for the control of biological and experimental variabilities. While several studies have recently proposed different solutions to circumvent this problem, substantial analytical differences among methodologies could hamper the experimental reproducibility and quantitative accuracy. Here, we propose a computational method to accurately compare ChIP-seq experiments, with exogenous spike-in chromatin, across samples in a genome-wide manner by using a local regression strategy (spikChIP). In contrast to the previous methodologies, spikChIP reduces the influence of sequencing noise of spike-in material during ChIP-seq normalization, while minimizes the overcorrection of non-occupied genomic regions in the experimental ChIP-seq. We demonstrate the utility of spikChIP with both histone and non-histone chromatin protein, allowing us to monitor for experimental reproducibility and the accurate ChIP-seq comparison of distinct experimental schemes. spikChIP software is available on GitHub (https://github.com/eblancoga/spikChIP).

Citing Articles

EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function.

Isshiki Y, Chen X, Teater M, Karagiannidis I, Nam H, Cai W Cancer Cell. 2024; 43(1):49-68.e9.

PMID: 39642889 PMC: 11732734. DOI: 10.1016/j.ccell.2024.11.006.


Multiplexed chromatin immunoprecipitation sequencing for quantitative study of histone modifications and chromatin factors.

Kumar B, Navarro C, Yung P, Lyu J, Salazar Mantero A, Katsori A Nat Protoc. 2024; 20(3):779-809.

PMID: 39363107 DOI: 10.1038/s41596-024-01058-z.


SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control.

Bressan D, Fernandez-Perez D, Romanel A, Chiacchiera F NAR Genom Bioinform. 2024; 6(3):lqae118.

PMID: 39211331 PMC: 11358820. DOI: 10.1093/nargab/lqae118.


Quantitative Comparison of Multiple Chromatin Immunoprecipitation-Sequencing (ChIP-seq) Experiments with spikChIP.

Blanco E, Ballare C, Di Croce L, Aranda S Methods Mol Biol. 2023; 2624:55-72.

PMID: 36723809 DOI: 10.1007/978-1-0716-2962-8_5.


Productive visualization of high-throughput sequencing data using the SeqCode open portable platform.

Blanco E, Gonzalez-Ramirez M, Di Croce L Sci Rep. 2021; 11(1):19545.

PMID: 34599234 PMC: 8486768. DOI: 10.1038/s41598-021-98889-7.

References
1.
Stunnenberg H, Hirst M . The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell. 2016; 167(5):1145-1149. DOI: 10.1016/j.cell.2016.11.007. View

2.
Aranda S, Shi Y, Di Croce L . Chromatin and Epigenetics at the Forefront: Finding Clues among Peaks. Mol Cell Biol. 2016; 36(19):2432-9. PMC: 5021377. DOI: 10.1128/MCB.00328-16. View

3.
Huang H, Lin S, Garcia B, Zhao Y . Quantitative proteomic analysis of histone modifications. Chem Rev. 2015; 115(6):2376-418. PMC: 4502928. DOI: 10.1021/cr500491u. View

4.
Skipper M, Eccleston A, Gray N, Heemels T, Le Bot N, Marte B . Presenting the epigenome roadmap. Nature. 2015; 518(7539):313. DOI: 10.1038/518313a. View

5.
Taruttis F, Feist M, Schwarzfischer P, Gronwald W, Kube D, Spang R . External calibration with Drosophila whole-cell spike-ins delivers absolute mRNA fold changes from human RNA-Seq and qPCR data. Biotechniques. 2017; 62(2):53-61. DOI: 10.2144/000114514. View