Identification of Structural Variation and Polymorphisms of a Sex Co-segregating Scaffold in Spinach
Overview
Authors
Affiliations
Spinach is a common vegetable, and dioecy is maintained by a pair of XY sex chromosomes. Due to limited genomic resources and its highly repetitive genome, limited studies were conducted to investigate the genomic landscape of the region near sex-determining loci. In this study, we screened the structure variations (SVs) between Y-linked contigs and a 1.78-Mb X scaffold (Super_scaffold 66), which enabled the development of 12 sex co-segregating DNA markers. These markers were tested in one F mapping population and 40 spinach accessions, which comprised 692 individual plants with the strong sex linkage pattern. In addition, we found that Super_scaffold 66 was highly repetitive along with the enriched LTR-RTs insertions and decreased microsatellite distribution compared with the rest genome, which matches extremely low gene density featured by only nine annotated genes. Synteny analysis between Y contigs and Superscaffold_66 revealed a 340-Kb accumulative Y contig (non-continuous) and a 500-Kb X counterpart along with SVs and wide-spread tandem duplications. Among the nine genes, one ABC transporter gene revealed noticeable SVs between Y contig and X counterpart, as an approximate 5-Kb recent Gypsy LTR-RT insertion in the Y-linked allele, but not the X allele. The gene paucity, SVs, and sex-linked polymorphisms attributed to the recombination suppression. We proposed that Super_scaffold 66 is part of the non-recombining region containing the sex determination genes. The spread of 12 sex co-segregating markers from this 1.78 Mb genomic region indicated the existence and expansion of sex determination region during progression of the Y chromosome.