» Articles » PMID: 34299463

Enhanced Electrochemical Performance of Supercapacitors Via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2021 Jul 24
PMID 34299463
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Fabricating electrical double-layer capacitors (EDLCs) with high energy density for various applications has been of great interest in recent years. However, activated carbon (AC) electrodes are restricted to a lower operating voltage because they suffer from instability above a threshold potential window. Thus, they are limited in their energy storage. The deposition of inorganic compounds' atomic layer deposition (ALD) aiming to enhance cycling performance of supercapacitors and battery electrodes can be applied to the AC electrode materials. Here, we report on the investigation of zinc oxide (ZnO) coating strategy in terms of different pulse times of precursors, ALD cycles, and deposition temperatures to ensure high electrical conductivity and capacitance retention without blocking the micropores of the AC electrode. Crystalline ZnO phase with its optimal forming condition is obtained preferably using a longer precursor pulse time. Supercapacitors comprising AC electrodes coated with 20 cycles of ALD ZnO at 70 °C and operated in TEABF/acetonitrile organic electrolyte show a specific capacitance of 23.13 F g at 5 mA cm and enhanced capacitance retention at 3.2 V, which well exceeds the normal working voltage of a commercial EDLC product (2.7 V). This work delivers an additional feasible approach of using ZnO ALD modification of AC materials, enhancing and promoting stable EDLC cells under high working voltages.

Citing Articles

Safety assessment of electrosurgical electrodes by using mini pig tissue.

Zhang X, Trinh T, Chien P, Giang N, Zhou S, Nam S Heliyon. 2024; 10(15):e35266.

PMID: 39161807 PMC: 11332808. DOI: 10.1016/j.heliyon.2024.e35266.


Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors.

Ansari M, Hussain I, Mohapatra D, Ansari S, Rahighi R, Nandi D Adv Sci (Weinh). 2023; 11(1):e2303055.

PMID: 37937382 PMC: 10767429. DOI: 10.1002/advs.202303055.


Al Foil-Supported Carbon Nanosheets as Self-Supporting Electrodes for High Areal Capacitance Supercapacitors.

Zheng J, Yan B, Feng L, Zhang Q, Han J, Zhang C Molecules. 2023; 28(4).

PMID: 36838820 PMC: 9966967. DOI: 10.3390/molecules28041831.


Dielectric Properties Investigation of Metal-Insulator-Metal (MIM) Capacitors.

Xiong L, Hu J, Yang Z, Li X, Zhang H, Zhang G Molecules. 2022; 27(12).

PMID: 35745073 PMC: 9227371. DOI: 10.3390/molecules27123951.

References
1.
Hong K, Cho M, Kim S . Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors. ACS Appl Mater Interfaces. 2014; 7(3):1899-906. DOI: 10.1021/am507673j. View

2.
Liu M, Li X, Karuturi S, Tok A, Fan H . Atomic layer deposition for nanofabrication and interface engineering. Nanoscale. 2012; 4(5):1522-8. DOI: 10.1039/c2nr11875k. View

3.
Cho H, Chen M, MacRae A, Meng Y . Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials. ACS Appl Mater Interfaces. 2015; 7(30):16231-9. DOI: 10.1021/acsami.5b01392. View

4.
Simon P, Gogotsi Y . Materials for electrochemical capacitors. Nat Mater. 2008; 7(11):845-54. DOI: 10.1038/nmat2297. View

5.
Vijayan B, Misnon I, Anil Kumar G, Miyajima K, Reddy M, Zaghib K . Facile fabrication of thin metal oxide films on porous carbon for high density charge storage. J Colloid Interface Sci. 2019; 562:567-577. DOI: 10.1016/j.jcis.2019.11.077. View