» Articles » PMID: 34295539

Drug Discovery Oncology in a Mouse: Concepts, Models and Limitations

Overview
Journal Future Sci OA
Specialty Biotechnology
Date 2021 Jul 23
PMID 34295539
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The utilization of suitable mouse models is a critical step in the drug discovery oncology workflow as their generation and use are important for target identification and validation as well as toxicity and efficacy assessments. Current murine models have been instrumental in furthering insights into the mode of action of drugs before transitioning into the clinic. Recent advancements in genome editing with the development of the CRISPR/Cas9 system and the possibility of applying such technology directly have expanded the toolkit of preclinical models available. In this review, a brief presentation of the current models used in drug discovery will be provided with a particular emphasis on the novel CRISPR/Cas9 models.

Citing Articles

Time-course analysis of cisplatin induced AKI in preclinical models: implications for testing different sources of MSCs.

Ganguly A, Chetty S, Primavera R, Levitte S, Regmi S, Dulken B J Transl Med. 2024; 22(1):789.

PMID: 39192240 PMC: 11348787. DOI: 10.1186/s12967-024-05439-6.


Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling.

Ravichandran M, Maddalo D Front Genet. 2023; 14:1273994.

PMID: 37908590 PMC: 10613999. DOI: 10.3389/fgene.2023.1273994.


Improving the predictive power of xenograft and syngeneic anti-tumour studies using mice humanised for pathways of drug metabolism.

Henderson C, McLaren A, Kapelyukh Y, Wolf C F1000Res. 2023; 11:1081.

PMID: 37065929 PMC: 10090862. DOI: 10.12688/f1000research.122987.2.


Functional Drug Screening in the Era of Precision Medicine.

Napoli G, Figg W, Chau C Front Med (Lausanne). 2022; 9:912641.

PMID: 35879922 PMC: 9307928. DOI: 10.3389/fmed.2022.912641.


Human Organoid and Supporting Technologies for Cancer and Toxicological Research.

Sekine K Front Genet. 2021; 12:759366.

PMID: 34745227 PMC: 8569236. DOI: 10.3389/fgene.2021.759366.

References
1.
Driehuis E, Van Hoeck A, Moore K, Kolders S, Francies H, Gulersonmez M . Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A. 2019; 116(52):26580-26590. PMC: 6936689. DOI: 10.1073/pnas.1911273116. View

2.
Dow L, Fisher J, ORourke K, Muley A, Kastenhuber E, Livshits G . Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015; 33(4):390-394. PMC: 4390466. DOI: 10.1038/nbt.3155. View

3.
Barcellos-Hoff M, Aggeler J, Ram T, Bissell M . Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989; 105(2):223-35. PMC: 2948482. DOI: 10.1242/dev.105.2.223. View

4.
Sanchez-Rivera F, Papagiannakopoulos T, Romero R, Tammela T, Bauer M, Bhutkar A . Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014; 516(7531):428-31. PMC: 4292871. DOI: 10.1038/nature13906. View

5.
Feldser D, Kostova K, Winslow M, Taylor S, Cashman C, Whittaker C . Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature. 2010; 468(7323):572-5. PMC: 3003305. DOI: 10.1038/nature09535. View