» Articles » PMID: 34282202

Genetic Characterization and Implications for Conservation of the Last Autochthonous Mouflon Population in Europe

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jul 20
PMID 34282202
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Population genetic studies provide accurate information on population structure, connectivity, and hybridization. These are key elements to identify units for conservation and define wildlife management strategies aimed to maintain and restore biodiversity. The Mediterranean island of Sardinia hosts one of the last autochthonous mouflon populations, descending from the wild Neolithic ancestor. The first mouflon arrived in Sardinia ~ 7000 years ago and thrived across the island until the twentieth century, when anthropogenic factors led to population fragmentation. We analysed the three main allopatric Sardinian mouflon sub-populations, namely: the native sub-populations of Montes Forest and Mount Tonneri, and the reintroduced sub-population of Mount Lerno. We investigated the spatial genetic structure of the Sardinian mouflon based on the parallel analysis of 14 highly polymorphic microsatellite loci and mitochondrial D-loop sequences. The Montes Forest sub-population was found to harbour the ancestral haplotype in the phylogeny of European mouflon. We detected high levels of relatedness in all the sub-populations and a mitochondrial signature of hybridization between the Mount Lerno sub-population and domestic sheep. Our findings provide useful insights to protect such an invaluable genetic heritage from the risk of genetic depletion by promoting controlled inter-population exchange and drawing informed repopulation plans sourcing from genetically pure mouflon stocks.

Citing Articles

How we look: European wild mouflon and feral domestic sheep hybrids.

Sprem N, Buzan E, Safner T Curr Zool. 2024; 70(3):298-303.

PMID: 39035767 PMC: 11255987. DOI: 10.1093/cz/zoad031.


Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages.

Atag G, Kaptan D, Yuncu E, Vural K, Mereu P, Pirastru M Genome Biol Evol. 2024; 16(5).

PMID: 38670119 PMC: 11109821. DOI: 10.1093/gbe/evae090.


Detection of selective sweep in European wild sheep breeds.

Alipanah M, Mazloom S, Gharari F 3 Biotech. 2024; 14(4):122.

PMID: 38560387 PMC: 10978567. DOI: 10.1007/s13205-024-03964-1.


Phenotype transition from wild mouflon to domestic sheep.

Mereu P, Pirastru M, Sanna D, Bassu G, Naitana S, Leoni G Genet Sel Evol. 2024; 56(1):1.

PMID: 38166592 PMC: 10763062. DOI: 10.1186/s12711-023-00871-6.

References
1.
Meadows J, Cemal I, Karaca O, Gootwine E, Kijas J . Five ovine mitochondrial lineages identified from sheep breeds of the near East. Genetics. 2006; 175(3):1371-9. PMC: 1840082. DOI: 10.1534/genetics.106.068353. View

2.
Zeder M . Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc Natl Acad Sci U S A. 2008; 105(33):11597-604. PMC: 2575338. DOI: 10.1073/pnas.0801317105. View

3.
Sanna D, Barbato M, Hadjisterkotis E, Cossu P, Decandia L, Trova S . The First Mitogenome of the Cyprus Mouflon (Ovis gmelini ophion): New Insights into the Phylogeny of the Genus Ovis. PLoS One. 2015; 10(12):e0144257. PMC: 4670089. DOI: 10.1371/journal.pone.0144257. View

4.
Poplin F . [Not Available]. Ann Genet Sel Anim. 2012; 11(2):133-43. PMC: 2718923. DOI: 10.1186/1297-9686-11-2-133. View

5.
Ruiz-Fons F, Sanchez-Matamoros A, Gortazar C, Sanchez-Vizcaino J . The role of wildlife in bluetongue virus maintenance in Europe: lessons learned after the natural infection in Spain. Virus Res. 2014; 182:50-8. DOI: 10.1016/j.virusres.2013.12.031. View