» Articles » PMID: 34282170

3D Cyclorama for Digital Unrolling and Visualisation of Deformed Tubes

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jul 20
PMID 34282170
Authors
Affiliations
Soon will be listed here.
Abstract

Colonic crypts are tubular glands that multiply through a symmetric branching process called crypt fission. During the early stages of colorectal cancer, the normal fission process is disturbed, leading to asymmetrical branching or budding. The challenging shapes of the budding crypts make it difficult to prepare paraffin sections for conventional histology, resulting in colonic cross sections with crypts that are only partially visible. To study crypt budding in situ and in three dimensions (3D), we employ X-ray micro-computed tomography to image intact colons, and a new method we developed (3D cyclorama) to digitally unroll them. Here, we present, verify and validate our '3D cyclorama' method that digitally unrolls deformed tubes of non-uniform thickness. It employs principles from electrostatics to reform the tube into a series of onion-like surfaces, which are mapped onto planar panoramic views. This enables the study of features extending over several layers of the tube's depth, demonstrated here by two case studies: (i) microvilli in the human placenta and (ii) 3D-printed adhesive films for drug delivery. Our 3D cyclorama method can provide novel insights into a wide spectrum of applications where digital unrolling or flattening is necessary, including long bones, teeth roots and ancient scrolls.

References
1.
Schindelin J, Rueden C, Hiner M, Eliceiri K . The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev. 2015; 82(7-8):518-29. PMC: 5428984. DOI: 10.1002/mrd.22489. View

2.
Pin C, Parker A, Gunning A, Ohta Y, Johnson I, Carding S . An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integr Biol (Camb). 2014; 7(2):213-28. DOI: 10.1039/c4ib00236a. View

3.
Wargovich M, Brown V, Morris J . Aberrant crypt foci: the case for inclusion as a biomarker for colon cancer. Cancers (Basel). 2013; 2(3):1705-16. PMC: 3837333. DOI: 10.3390/cancers2031705. View

4.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PMC: 3855844. DOI: 10.1038/nmeth.2019. View

5.
Park H, Goodlad R, Ahnen D, Winnett A, Sasieni P, Lee C . Effects of epidermal growth factor and dimethylhydrazine on crypt size, cell proliferation, and crypt fission in the rat colon. Cell proliferation and crypt fission are controlled independently. Am J Pathol. 1997; 151(3):843-52. PMC: 1857833. View