6.
Shih A, Blinder P, Tsai P, Friedman B, Stanley G, Lyden P
. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 2012; 16(1):55-63.
PMC: 3952571.
DOI: 10.1038/nn.3278.
View
7.
Salameh G, Jeffers M, Wu J, Pitney J, Silasi G
. The Home-Cage Automated Skilled Reaching Apparatus (HASRA): Individualized Training of Group-Housed Mice in a Single Pellet Reaching Task. eNeuro. 2020; 7(5).
PMC: 7581188.
DOI: 10.1523/ENEURO.0242-20.2020.
View
8.
Summers P, Hartmann D, Hui E, Nie X, Deardorff R, McKinnon E
. Functional deficits induced by cortical microinfarcts. J Cereb Blood Flow Metab. 2017; 37(11):3599-3614.
PMC: 5669342.
DOI: 10.1177/0271678X16685573.
View
9.
Gold G, Kovari E, Herrmann F, Canuto A, Hof P, Michel J
. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke. 2005; 36(6):1184-8.
DOI: 10.1161/01.STR.0000166052.89772.b5.
View
10.
Taylor Z, Hui E, Watson A, Nie X, Deardorff R, Jensen J
. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex. J Cereb Blood Flow Metab. 2015; 36(8):1357-73.
PMC: 4976746.
DOI: 10.1177/0271678X15608388.
View
11.
Holland P, Searcy J, Salvadores N, Scullion G, Chen G, Lawson G
. Gliovascular disruption and cognitive deficits in a mouse model with features of small vessel disease. J Cereb Blood Flow Metab. 2015; 35(6):1005-14.
PMC: 4640247.
DOI: 10.1038/jcbfm.2015.12.
View
12.
Wang M, Iliff J, Liao Y, Chen M, Shinseki M, Venkataraman A
. Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. J Neurosci. 2012; 32(50):17948-60.
PMC: 3541041.
DOI: 10.1523/JNEUROSCI.1860-12.2012.
View
13.
Balbi M, Vanni M, Vega M, Silasi G, Sekino Y, Boyd J
. Longitudinal monitoring of mesoscopic cortical activity in a mouse model of microinfarcts reveals dissociations with behavioral and motor function. J Cereb Blood Flow Metab. 2018; 39(8):1486-1500.
PMC: 6681536.
DOI: 10.1177/0271678X18763428.
View
14.
Groeneboom N, Yates S, Puchades M, Bjaalie J
. Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. Front Neuroinform. 2020; 14:37.
PMC: 7472695.
DOI: 10.3389/fninf.2020.00037.
View
15.
Aswendt M, Schwarz M, Abdelmoula W, Dijkstra J, Dedeurwaerdere S
. Whole-Brain Microscopy Meets In Vivo Neuroimaging: Techniques, Benefits, and Limitations. Mol Imaging Biol. 2016; 19(1):1-9.
DOI: 10.1007/s11307-016-0988-z.
View
16.
Wang Q, Ding S, Li Y, Royall J, Feng D, Lesnar P
. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell. 2020; 181(4):936-953.e20.
PMC: 8152789.
DOI: 10.1016/j.cell.2020.04.007.
View
17.
Brundel M, de Bresser J, van Dillen J, Kappelle L, Biessels G
. Cerebral microinfarcts: a systematic review of neuropathological studies. J Cereb Blood Flow Metab. 2012; 32(3):425-36.
PMC: 3293128.
DOI: 10.1038/jcbfm.2011.200.
View
18.
Lein E, Hawrylycz M, Ao N, Ayres M, Bensinger A, Bernard A
. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006; 445(7124):168-76.
DOI: 10.1038/nature05453.
View
19.
Silasi G, She J, Boyd J, Xue S, Murphy T
. A mouse model of small-vessel disease that produces brain-wide-identified microocclusions and regionally selective neuronal injury. J Cereb Blood Flow Metab. 2015; 35(5):734-8.
PMC: 4420872.
DOI: 10.1038/jcbfm.2015.8.
View
20.
van der Wijk A, Georgakopoulou T, Majolee J, van Bezu J, van der Stoel M, van Het Hof B
. Microembolus clearance through angiophagy is an auxiliary mechanism preserving tissue perfusion in the rat brain. Acta Neuropathol Commun. 2020; 8(1):195.
PMC: 7671188.
DOI: 10.1186/s40478-020-01071-9.
View