» Articles » PMID: 34265199

Differences in Brain Morphology Between Hydrocephalus Ex Vacuo and Idiopathic Normal Pressure Hydrocephalus

Overview
Specialty Psychiatry
Date 2021 Jul 15
PMID 34265199
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: The distinction between idiopathic normal pressure hydrocephalus (iNPH) and hydrocephalus ex vacuo caused by encephalic volume loss remains to be established. This study aims to investigate radiological parameters as clinically useful tools to discriminate iNPH from hydrocephalus ex vacuo caused by Alzheimer's disease (AD).

Methods: A total of 54 patients with ventriculomegaly (iNPH, 25; hydrocephalus ex vacuo, 29) were recruited in this study. Consequently, nine radiological parameters were compared between iNPH and hydrocephalus ex vacuo using magnetic resonance imaging (MRI).

Results: A small callosal angle (CA), the Sylvian fissure dilatation, and absence of narrowing of superior parietal sulci discriminated the iNPH group from the hydrocephalus ex vacuo group (p<0.05). The final binary logistic regression model included narrowing of superior parietal sulci, degrees of the CA, and height of the Sylvian fissure after controlling for age and global Clinical Dementia Rating (CDR). The composite score made from these three indicators (narrowing of superior parietal sulci, degrees of the CA, and height of the Sylvian fissure) was statistically different between iNPH and hydrocephalus ex vacuo.

Conclusion: The narrowing of the CA, dilatation of the Sylvain fissure, and narrowing of superior parietal sulci may be used as radiological key indices and noninvasive tools for the differential diagnosis of iNPH from hydrocephalus ex vacuo.

Citing Articles

A Rare Presentation of Functional Movement Disorder Mimicking Normal Pressure Hydrocephalus.

Onder H, Ulker A, Comoglu S Asian J Neurosurg. 2024; 19(2):305-308.

PMID: 38974455 PMC: 11226252. DOI: 10.1055/s-0044-1779514.


Radiological biomarkers of idiopathic normal pressure hydrocephalus: new approaches for detecting concomitant Alzheimer's disease and predicting prognosis.

Cai H, Zou Y, Gao H, Huang K, Liu Y, Cheng Y Psychoradiology. 2024; 2(4):156-170.

PMID: 38665278 PMC: 10917212. DOI: 10.1093/psyrad/kkac019.


Utility of cortical tissue analysis in normal pressure hydrocephalus.

Greenberg A, Mekbib K, Mehta N, Kiziltug E, Duy P, Smith H Cereb Cortex. 2024; 34(2.

PMID: 38275188 PMC: 10839843. DOI: 10.1093/cercor/bhae001.


The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology.

Duy P, Mehta N, Kahle K Cereb Cortex. 2023; 34(1).

PMID: 37991277 PMC: 10793578. DOI: 10.1093/cercor/bhad432.

References
1.
Holodny A, George A, Golomb J, de Leon M, Kalnin A . The perihippocampal fissures: normal anatomy and disease states. Radiographics. 1998; 18(3):653-65. DOI: 10.1148/radiographics.18.3.9599389. View

2.
Martin-Laez R, Caballero-Arzapalo H, Valle-San Roman N, Lopez-Menendez L, Arango-Lasprilla J, Vazquez-Barquero A . Incidence of Idiopathic Normal-Pressure Hydrocephalus in Northern Spain. World Neurosurg. 2015; 87:298-310. DOI: 10.1016/j.wneu.2015.10.069. View

3.
Hebb A, Cusimano M . Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery. 2002; 49(5):1166-84; discussion 1184-6. DOI: 10.1097/00006123-200111000-00028. View

4.
Virhammar J, Laurell K, Cesarini K, Larsson E . Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2014; 35(12):2311-8. PMC: 7965311. DOI: 10.3174/ajnr.A4046. View

5.
Zimmerman R, Fleming C, Lee B, Saint-Louis L, Deck M . Periventricular hyperintensity as seen by magnetic resonance: prevalence and significance. AJR Am J Roentgenol. 1986; 146(3):443-50. DOI: 10.2214/ajr.146.3.443. View