» Articles » PMID: 34251194

Q-Force: Quantum Mechanically Augmented Molecular Force Fields

Overview
Specialties Biochemistry
Chemistry
Date 2021 Jul 12
PMID 34251194
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The quality of molecular dynamics simulations strongly depends on the accuracy of the underlying force fields (FFs) that determine all intra- and intermolecular interactions of the system. Commonly, transferable FF parameters are determined based on a representative set of small molecules. However, such an approach sacrifices accuracy in favor of generality. In this work, an open-source and automated toolkit named Q-Force is presented, which augments these transferable FFs with molecule-specific bonded parameters and atomic charges that are derived from quantum mechanical (QM) calculations. The molecular fragmentation procedure allows treatment of large molecules (>200 atoms) with a low computational cost. The generated Q-Force FFs can be used at the same computational cost as transferable FFs, but with improved accuracy: We demonstrate this for the vibrational properties on a set of small molecules and for the potential energy surface on a complex molecule (186 atoms) with photovoltaic applications. Overall, the accuracy, user-friendliness, and minimal computational overhead of the Q-Force protocol make it widely applicable for atomistic molecular dynamics simulations.

Citing Articles

Stereospecific Properties and Intracellular Transport of Novel Intrinsically Fluorescent Neurosteroids.

Akkerman V, Reinholdt P, Schnoor-Madsen R, Lauritsen L, Bader J, Qian M ACS Chem Neurosci. 2024; 15(23):4322-4336.

PMID: 39574303 PMC: 11892034. DOI: 10.1021/acschemneuro.4c00571.


Synthesis and Characterization of a Novel Intrinsically Fluorescent Analog of Cholesterol with Improved Photophysical Properties.

Lehmann M, Halder S, Reinholdt P, Bashawat M, Scheidt H, Leopold J Anal Chem. 2024; 96(47):18596-18604.

PMID: 39537343 PMC: 11603404. DOI: 10.1021/acs.analchem.3c05720.


Non-negligible Outer-Shell Reorganization Energy for Charge Transfer in Nonpolar Systems.

Yang C, Wang C, Wang Y, Hsu C J Chem Theory Comput. 2024; .

PMID: 39143838 PMC: 11360142. DOI: 10.1021/acs.jctc.4c00742.


Capturing chemical reactions inside biomolecular condensates with reactive Martini simulations.

Brasnett C, Kiani A, Sami S, Otto S, Marrink S Commun Chem. 2024; 7(1):151.

PMID: 38961263 PMC: 11222477. DOI: 10.1038/s42004-024-01234-y.


Simple and Accurate One-Body Energy and Dipole Moment Surfaces for Water and Beyond.

Sami S, LaCour R, Heindel J, Head-Gordon T J Phys Chem Lett. 2024; 15(26):6712-6721.

PMID: 38900596 PMC: 11229074. DOI: 10.1021/acs.jpclett.4c00587.


References
1.
Wang J, Wolf R, Caldwell J, Kollman P, Case D . Development and testing of a general amber force field. J Comput Chem. 2004; 25(9):1157-74. DOI: 10.1002/jcc.20035. View

2.
Zheng Z, Awartani O, Gautam B, Liu D, Qin Y, Li W . Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency. Adv Mater. 2016; 29(5). DOI: 10.1002/adma.201604241. View

3.
Spicher S, Grimme S . Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. Angew Chem Int Ed Engl. 2020; 59(36):15665-15673. PMC: 7267649. DOI: 10.1002/anie.202004239. View

4.
Brunken C, Reiher M . Self-Parametrizing System-Focused Atomistic Models. J Chem Theory Comput. 2020; 16(3):1646-1665. DOI: 10.1021/acs.jctc.9b00855. View

5.
Stroet M, Caron B, Visscher K, Geerke D, Malde A, Mark A . Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. J Chem Theory Comput. 2018; 14(11):5834-5845. DOI: 10.1021/acs.jctc.8b00768. View