» Articles » PMID: 34239306

Circular RNAs Regulate Glucose Metabolism in Cancer Cells

Overview
Publisher Dove Medical Press
Specialty Oncology
Date 2021 Jul 9
PMID 34239306
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.

Citing Articles

CircABHD2 Inhibits Malignant Progression of Endometrial Cancer by Regulating NAD/NAMPT Metabolism Axis.

Li H, Xu H, Liu M, Li Y, Yuan S, Yin P Mol Biotechnol. 2024; .

PMID: 38951482 DOI: 10.1007/s12033-024-01226-2.


Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system.

Zhang Y, Zhang C, Peng C, Jia J Noncoding RNA Res. 2024; 9(3):853-864.

PMID: 38586314 PMC: 10995981. DOI: 10.1016/j.ncrna.2024.03.004.


Research progress of circRNA in malignant tumour metabolic reprogramming.

Geng Y, Wang M, Wu Z, Jia J, Yang T, Yu L RNA Biol. 2023; 20(1):641-651.

PMID: 37599427 PMC: 10443989. DOI: 10.1080/15476286.2023.2247877.


Non-coding RNAs in breast cancer: with a focus on glucose metabolism reprogramming.

Liang J, Ye C, Chen K, Gao Z, Lu F, Wei K Discov Oncol. 2023; 14(1):72.

PMID: 37204526 PMC: 10199155. DOI: 10.1007/s12672-023-00687-2.


A Novel Microcrystalline BAY-876 Formulation Achieves Long-Acting Antitumor Activity Against Aerobic Glycolysis and Proliferation of Hepatocellular Carcinoma.

Yang H, Zhang M, Sun H, Chai Y, Li X, Jiang Q Front Oncol. 2021; 11:783194.

PMID: 34869036 PMC: 8636331. DOI: 10.3389/fonc.2021.783194.

References
1.
Liang F, Li Q, Li X, Li Z, Gong Z, Deng H . TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer. Int J Oncol. 2016; 49(3):1046-56. DOI: 10.3892/ijo.2016.3599. View

2.
Dang C, Le A, Gao P . MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009; 15(21):6479-83. PMC: 2783410. DOI: 10.1158/1078-0432.CCR-09-0889. View

3.
Hussien R, Brooks G . Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics. 2010; 43(5):255-64. PMC: 3068517. DOI: 10.1152/physiolgenomics.00177.2010. View

4.
Liu W, Yin C, Liu Y . Circular RNA circ_0091579 Promotes Hepatocellular Carcinoma Proliferation, Migration, Invasion, and Glycolysis Through miR-490-5p/CASC3 Axis. Cancer Biother Radiopharm. 2020; 36(10):863-878. DOI: 10.1089/cbr.2019.3472. View

5.
Gudi R, Kedishvili N, Zhao Y, Popov K . Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem. 1995; 270(48):28989-94. DOI: 10.1074/jbc.270.48.28989. View