» Articles » PMID: 34231555

A New Approach for Identifying Positional Isomers of Glycans Cleaved from Monoclonal Antibodies

Overview
Journal Analyst
Specialty Chemistry
Date 2021 Jul 7
PMID 34231555
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Glycosylation patterns in monoclonal antibodies (mAbs) can vary significantly between different host cell types, and these differences may affect mAbs safety, efficacy, and immunogenicity. Recent studies have demonstrated that glycan isomers with the terminal galactose position on either the Man α1-3 arm or the Man α1-6 arm have an impact on the effector functions and dynamic structure of mAbs. The development of a robust method to distinguish positional isomers of glycans is thus critical to guarantee mAb quality. In this work, we apply high-resolution ion mobility combined with cryogenic infrared spectroscopy to distinguish isomeric glycans with different terminal galactose positions, using G1F as an example. Selective enzymatic synthesis of the G1(α1-6)F isomer allows us to assign the peaks in the arrival-time distributions and the infrared spectra to their respective isomeric forms. Moreover, we demonstrate the impact of the host cell line (CHO and HEK-293) on the IgG G1F gycan profile at the isomer level. This work illustrates the potential of our approach for glycan analysis of mAbs.

Citing Articles

Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry.

Naylor C, Nagy G Mass Spectrom Rev. 2024; .

PMID: 39087820 PMC: 11785821. DOI: 10.1002/mas.21902.


Using Hadamard Transform Multiplexed IR Spectroscopy Together with a Segmented Ion Trap for the Identification of Mobility-Selected Isomers.

Yatsyna V, Abikhodr A, Ben Faleh A, Warnke S, Rizzo T Anal Chem. 2023; 95(25):9623-9629.

PMID: 37307499 PMC: 10308330. DOI: 10.1021/acs.analchem.3c01340.


New Approach for the Identification of Isobaric and Isomeric Metabolites.

Ben Faleh A, Warnke S, van Wieringen T, Abikhodr A, Rizzo T Anal Chem. 2023; 95(18):7118-7126.

PMID: 37119183 PMC: 10173252. DOI: 10.1021/acs.analchem.2c04962.


Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments.

Zercher B, Gozzo T, Wageman A, Bush M Annu Rev Anal Chem (Palo Alto Calif). 2023; 16(1):27-48.

PMID: 37000959 PMC: 10545071. DOI: 10.1146/annurev-anchem-091522-031329.


Multistage Ion Mobility Spectrometry Combined with Infrared Spectroscopy for Glycan Analysis.

Bansal P, Ben Faleh A, Warnke S, Rizzo T J Am Soc Mass Spectrom. 2023; 34(4):695-700.

PMID: 36881006 PMC: 10080682. DOI: 10.1021/jasms.2c00361.


References
1.
Wright A, Morrison S . Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 1997; 15(1):26-32. DOI: 10.1016/S0167-7799(96)10062-7. View

2.
Calderon A, Liu Y, Li X, Wang X, Chen X, Li L . Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans. Org Biomol Chem. 2016; 14(17):4027-31. PMC: 4852481. DOI: 10.1039/c6ob00586a. View

3.
Houde D, Peng Y, Berkowitz S, Engen J . Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics. 2010; 9(8):1716-28. PMC: 2938052. DOI: 10.1074/mcp.M900540-MCP200. View

4.
Hernandez O, Isenberg S, Steinmetz V, Glish G, Maitre P . Probing Mobility-Selected Saccharide Isomers: Selective Ion-Molecule Reactions and Wavelength-Specific IR Activation. J Phys Chem A. 2015; 119(23):6057-64. DOI: 10.1021/jp511975f. View

5.
Shvartsburg A, Smith R . Fundamentals of traveling wave ion mobility spectrometry. Anal Chem. 2008; 80(24):9689-99. PMC: 2761765. DOI: 10.1021/ac8016295. View