» Articles » PMID: 34221687

Model Learning Analysis of 3D Optoacoustic Mesoscopy Images for the Classification of Atopic Dermatitis

Overview
Specialty Radiology
Date 2021 Jul 5
PMID 34221687
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Atopic dermatitis (AD) is a skin inflammatory disease affecting 10% of the population worldwide. Raster-scanning optoacoustic mesoscopy (RSOM) has recently shown promise in dermatological imaging. We conducted a comprehensive analysis using three machine-learning models, random forest (RF), support vector machine (SVM), and convolutional neural network (CNN) for classifying healthy versus AD conditions, and sub-classifying different AD severities using RSOM images and clinical information. CNN model successfully differentiates healthy from AD patients with 97% accuracy. With limited data, RF achieved 65% accuracy in sub-classifying AD patients into mild versus moderate-severe cases. Identification of disease severities is vital in managing AD treatment.

Citing Articles

Atopic dermatitis: a comprehensive updated review of this intriguing disease with futuristic insights.

Abdel-Mageed H Inflammopharmacology. 2025; .

PMID: 39918744 DOI: 10.1007/s10787-025-01642-z.


Artificial Intelligence: A Snapshot of Its Application in Chronic Inflammatory and Autoimmune Skin Diseases.

Li Pomi F, Papa V, Borgia F, Vaccaro M, Pioggia G, Gangemi S Life (Basel). 2024; 14(4).

PMID: 38672786 PMC: 11051135. DOI: 10.3390/life14040516.


Multispectral raster-scanning optoacoustic mesoscopy differentiate lesional from non-lesional atopic dermatitis skin using structural and functional imaging markers.

Li X, Moothanchery M, Kwa C, Tan W, Yew Y, Thng S Photoacoustics. 2022; 28:100399.

PMID: 36090012 PMC: 9450137. DOI: 10.1016/j.pacs.2022.100399.


Translational Photoacoustic Imaging for Disease Diagnosis, Monitoring, and Surgical Guidance: introduction to the feature issue.

Xia J, Bell M, Laufer J, Yao J Biomed Opt Express. 2021; 12(7):4115-4118.

PMID: 34457402 PMC: 8367276. DOI: 10.1364/BOE.430421.

References
1.
Chopra R, Vakharia P, Sacotte R, Patel N, Immaneni S, White T . Severity strata for Eczema Area and Severity Index (EASI), modified EASI, Scoring Atopic Dermatitis (SCORAD), objective SCORAD, Atopic Dermatitis Severity Index and body surface area in adolescents and adults with atopic dermatitis. Br J Dermatol. 2017; 177(5):1316-1321. DOI: 10.1111/bjd.15641. View

2.
Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H . Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115-118. PMC: 8382232. DOI: 10.1038/nature21056. View

3.
Agrawal R, Woodfolk J . Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014; 14(5):433. PMC: 4034059. DOI: 10.1007/s11882-014-0433-9. View

4.
Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y . Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol. 2018; 180(2):373-381. DOI: 10.1111/bjd.16924. View

5.
Charman C, Venn A, Williams H, Bigby M . Measuring atopic eczema severity visually: which variables are most important to patients?. Arch Dermatol. 2005; 141(9):1146-51. DOI: 10.1001/archderm.141.9.1146. View