» Articles » PMID: 34220725

Energy Status Differentially Modifies Feeding Behavior and POMC Neuron Activity After Acute Treadmill Exercise in Untrained Mice

Overview
Specialty Endocrinology
Date 2021 Jul 5
PMID 34220725
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Emerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus. Mature, untrained male mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Fed and 10-hour-fasted mice were used, and food intake was monitored 48h. post-exercise. Immunohistochemical detection of cFOS was performed 1-hour post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3 and pERK were performed to detect exercise-mediated changes in intracellular signaling. Results demonstrated that fasted high intensity exercise suppressed food intake compared to sedentary trials, which was concurrent with increased anorexigenic POMC neuron activity. Conversely, fed mice experienced augmented post-exercise food intake, with no effects on POMC neuron activity. Regardless of pre-exercise energy status, tyrosine hydroxylase and SIM1 neuron activity in the paraventricular nucleus was elevated, as well as NPY/AgRP neuron activity in the arcuate nucleus. Notably, these neuronal changes were independent from changes in pSTAT3 and pERK signaling. Overall, these results suggest fasted high intensity exercise may be beneficial for suppressing food intake, possibly due to hypothalamic POMC neuron excitation. Furthermore, this study identifies a novel role for pre-exercise energy status to differentially modify post-exercise feeding behavior and hypothalamic neuron activity, which may explain the inconsistent results from studies investigating exercise as a weight loss intervention.

Citing Articles

Genetic assessment of litter size, body weight, carcass traits and gene expression profiles in exotic and indigenous rabbit breeds: a study on New Zealand White, Californian, and Gabali rabbits in Egypt.

Ayyat M, El-Monem U, Moustafa M, Al-Sagheer A, Mahran M, El-Attrouny M Trop Anim Health Prod. 2024; 56(7):244.

PMID: 39172291 PMC: 11341605. DOI: 10.1007/s11250-024-04082-z.


Exercise increases NPY/AgRP and TH neuron activity in the hypothalamus of female mice.

Landry T, Shookster D, Chaves A, Free K, Nguyen T, Huang H J Endocrinol. 2021; 252(3):167-177.

PMID: 34854381 PMC: 9039839. DOI: 10.1530/JOE-21-0250.

References
1.
Donnelly J, Smith B . Is exercise effective for weight loss with ad libitum diet? Energy balance, compensation, and gender differences. Exerc Sport Sci Rev. 2005; 33(4):169-74. DOI: 10.1097/00003677-200510000-00004. View

2.
Broom D, Stensel D, Bishop N, Burns S, Miyashita M . Exercise-induced suppression of acylated ghrelin in humans. J Appl Physiol (1985). 2007; 102(6):2165-71. DOI: 10.1152/japplphysiol.00759.2006. View

3.
Belgardt B, Okamura T, Bruning J . Hormone and glucose signalling in POMC and AgRP neurons. J Physiol. 2009; 587(Pt 22):5305-14. PMC: 2793863. DOI: 10.1113/jphysiol.2009.179192. View

4.
Qu N, He Y, Wang C, Xu P, Yang Y, Cai X . A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol Psychiatry. 2019; 25(5):1006-1021. PMC: 7056580. DOI: 10.1038/s41380-019-0506-1. View

5.
Calvez J, Fromentin G, Nadkarni N, Darcel N, Even P, Tome D . Inhibition of food intake induced by acute stress in rats is due to satiation effects. Physiol Behav. 2011; 104(5):675-83. DOI: 10.1016/j.physbeh.2011.07.012. View