» Articles » PMID: 34219651

GluA4 Facilitates Cerebellar Expansion Coding and Enables Associative Memory Formation

Overview
Journal Elife
Specialty Biology
Date 2021 Jul 5
PMID 34219651
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

AMPA receptors (AMPARs) mediate excitatory neurotransmission in the central nervous system (CNS) and their subunit composition determines synaptic efficacy. Whereas AMPAR subunits GluA1-GluA3 have been linked to particular forms of synaptic plasticity and learning, the functional role of GluA4 remains elusive. Here, we demonstrate a crucial function of GluA4 for synaptic excitation and associative memory formation in the cerebellum. Notably, GluA4-knockout mice had ~80% reduced mossy fiber to granule cell synaptic transmission. The fidelity of granule cell spike output was markedly decreased despite attenuated tonic inhibition and increased NMDA receptor-mediated transmission. Computational network modeling incorporating these changes revealed that deletion of GluA4 impairs granule cell expansion coding, which is important for pattern separation and associative learning. On a behavioral level, while locomotor coordination was generally spared, GluA4-knockout mice failed to form associative memories during delay eyeblink conditioning. These results demonstrate an essential role for GluA4-containing AMPARs in cerebellar information processing and associative learning.

Citing Articles

A deep learning framework for automated and generalized synaptic event analysis.

ONeill P, Baccino-Calace M, Rupprecht P, Lee S, Hao Y, Lin M Elife. 2025; 13.

PMID: 40042890 PMC: 11882139. DOI: 10.7554/eLife.98485.


Behavioral decline in Shank3 mice during early adulthood parallels cerebellar granule cell glutamatergic synaptic changes.

Kshetri R, Beavers J, Hyde R, Ewa R, Schwertman A, Porcayo S Mol Autism. 2024; 15(1):52.

PMID: 39633421 PMC: 11616285. DOI: 10.1186/s13229-024-00628-y.


Behavioral regression in shank3 mice during early adulthood corresponds to cerebellar granule cell glutamatergic synaptic changes.

Kshetri R, Beavers J, Hyde R, Ewa R, Schwertman A, Porcayo S Res Sq. 2024; .

PMID: 39281868 PMC: 11398578. DOI: 10.21203/rs.3.rs-4888950/v1.


Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families.

Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T Genes (Basel). 2023; 14(10).

PMID: 37895291 PMC: 10606877. DOI: 10.3390/genes14101942.


GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites.

Perozzo A, Schwenk J, Kamalova A, Nakagawa T, Fakler B, Bowie D Nat Commun. 2023; 14(1):6799.

PMID: 37884493 PMC: 10603098. DOI: 10.1038/s41467-023-42517-7.


References
1.
Billings G, Piasini E, Lorincz A, Nusser Z, Silver R . Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron. 2014; 83(4):960-74. PMC: 4148198. DOI: 10.1016/j.neuron.2014.07.020. View

2.
Shimuta M, Sugihara I, Ishikawa T . Multiple signals evoked by unisensory stimulation converge onto cerebellar granule and Purkinje cells in mice. Commun Biol. 2020; 3(1):381. PMC: 7363865. DOI: 10.1038/s42003-020-1110-2. View

3.
DiGregorio D, Nusser Z, Silver R . Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 2002; 35(3):521-33. DOI: 10.1016/s0896-6273(02)00787-0. View

4.
Machado A, Darmohray D, Fayad J, Marques H, Carey M . A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. Elife. 2015; 4. PMC: 4630674. DOI: 10.7554/eLife.07892. View

5.
Monyer H, Seeburg P, Wisden W . Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron. 1991; 6(5):799-810. DOI: 10.1016/0896-6273(91)90176-z. View