» Articles » PMID: 34216876

A Portable Droplet Generation System for Ultra-wide Dynamic Range Digital PCR Based on a Vibrating Sharp-tip Capillary

Overview
Date 2021 Jul 3
PMID 34216876
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Monodisperse droplet has been widely used as a versatile tool in different disciplines including biosensing. Existing methods still struggle to balance the droplet generation performance with system simplicity. Here we introduce a novel droplet generation scheme based on the acoustic streaming generated from a vibrating sharp-tip capillary. The unique fluid pattern enables efficient droplet generation without any external pressure sources. This method achieved real-time modulation of droplet size over an ultra-wide range (6.77-661 μm), high throughput (up to 5000 droplets/s), and good monodispersity (<4%) with a power consumption below 60 mW. This method has enabled a multi-volume digital PCR with a dynamic range of ~6 orders of magnitude and multiplexing capability. It has also enabled a simple protocol to produce cell-laden alginate microcapsules in variable sizes with excellent biocompatibility. Overall, the present method combines high performance with small footprint and portability, which will be especially valuable for droplet applications requiring variable droplet size and performed in resource-limited settings.

Citing Articles

Investigation of piezoelectric printing devices for oil-free and on-demand picolitre monodisperse droplet generation.

Wu Z, Han S, Meng H, Lian D, Wu T, Chu W Sci Rep. 2024; 14(1):17104.

PMID: 39048610 PMC: 11269629. DOI: 10.1038/s41598-024-67849-2.


Nucleic Acid Target Sensing Using a Vibrating Sharp-Tip Capillary and Digital Droplet Loop-Mediated Isothermal Amplification (ddLAMP).

Fike B, Curtin K, Li P Sensors (Basel). 2024; 24(13).

PMID: 39001045 PMC: 11243892. DOI: 10.3390/s24134266.


Improved Canker Processing and Viability Droplet Digital PCR Allow Detection of Viable Nonculturable Cells in Apple Bark.

Dhar B, Delgado Santander R, Acimovic S Microorganisms. 2024; 12(2).

PMID: 38399780 PMC: 10893025. DOI: 10.3390/microorganisms12020376.


Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.

Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W Ultrason Sonochem. 2023; 96:106441.

PMID: 37216791 PMC: 10213378. DOI: 10.1016/j.ultsonch.2023.106441.


CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications.

Huang Z, Lyon C, Wang J, Lu S, Hu T Adv Sci (Weinh). 2023; 10(20):e2301697.

PMID: 37162202 PMC: 10369298. DOI: 10.1002/advs.202301697.


References
1.
Huang P, Chan C, Li P, Wang Y, Nama N, Bachman H . A sharp-edge-based acoustofluidic chemical signal generator. Lab Chip. 2018; 18(10):1411-1421. PMC: 6064650. DOI: 10.1039/c8lc00193f. View

2.
Huang H, Yu Y, Hu Y, He X, Usta O, Yarmush M . Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip. 2017; 17(11):1913-1932. PMC: 5548188. DOI: 10.1039/c7lc00262a. View

3.
Doinikov A, Gerlt M, Dual J . Acoustic Radiation Forces Produced by Sharp-Edge Structures in Microfluidic Systems. Phys Rev Lett. 2020; 124(15):154501. DOI: 10.1103/PhysRevLett.124.154501. View

4.
Payne E, Holland-Moritz D, Sun S, Kennedy R . High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab Chip. 2020; 20(13):2247-2262. DOI: 10.1039/d0lc00347f. View

5.
Chen Z, Liao P, Zhang F, Jiang M, Zhu Y, Huang Y . Centrifugal micro-channel array droplet generation for highly parallel digital PCR. Lab Chip. 2016; 17(2):235-240. DOI: 10.1039/c6lc01305h. View