» Articles » PMID: 34215846

Global Identification of Phospho-dependent SCF Substrates Reveals a FBXO22 Phosphodegron and an ERK-FBXO22-BAG3 Axis in Tumorigenesis

Overview
Specialty Cell Biology
Date 2021 Jul 3
PMID 34215846
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

SKP1-CUL1-F-box (SCF) ubiquitin ligases play fundamental roles in cellular functions. Typically, substrate phosphorylation is required for SCF recognition and subsequent degradation. However, phospho-dependent substrates remain largely unidentified. Here, using quantitative phoshoproteome approach, we performed a system-wide investigation of phospho-dependent SCF substrates. This strategy identified diverse phospho-dependent candidates. Biochemical verification revealed a mechanism by which SCF recognizes the motif XXPpSPXPXX as a conserved phosphodegron to target substrates for destruction. We further demonstrated BAG3, a HSP70 co-chaperone, is a bona fide substrate of SCF. FBXO22 mediates BAG3 ubiquitination and degradation that requires ERK-dependent BAG3 phosphorylation at S377. FBXO22 depletion or expression of a stable BAG3 S377A mutant promotes tumor growth via defects in apoptosis and cell cycle progression in vitro and in vivo. In conclusion, our study identified broad phosphorylation-dependent SCF substrates and demonstrated a phosphodegron recognized by FBXO22 and a novel ERK-FBXO22-BAG3 axis involved in tumorigenesis.

Citing Articles

Proteomic Characterization of Liver Cancer Cells Treated with Clinical Targeted Drugs for Hepatocellular Carcinoma.

Long H, Zhou J, Zhou C, Xie S, Wang J, Tan M Biomedicines. 2025; 13(1.

PMID: 39857736 PMC: 11760458. DOI: 10.3390/biomedicines13010152.


Revealing the Mechanism of Protein Degradation in Postmortem Meat: The Role of Phosphorylation and Ubiquitination.

Zhao X, Wu S, Ren C, Bai Y, Hou C, Li X Foods. 2025; 14(2.

PMID: 39856851 PMC: 11764534. DOI: 10.3390/foods14020184.


SKP1-CUL1-F-box: Key molecular targets affecting disease progression.

Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y FASEB J. 2025; 39(2):e70326.

PMID: 39812503 PMC: 11734646. DOI: 10.1096/fj.202402816RR.


USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway.

Li S, Yang L, Ding X, Sun H, Dong X, Yang F Oncogenesis. 2024; 13(1):27.

PMID: 39030175 PMC: 11271578. DOI: 10.1038/s41389-024-00528-z.


Promotion of stem cell-like phenotype of lung adenocarcinoma by FAM83A via stabilization of ErbB2.

Yuan Y, Hao L, Huang J, Zhao F, Ju Y, Wang J Cell Death Dis. 2024; 15(6):460.

PMID: 38942760 PMC: 11213963. DOI: 10.1038/s41419-024-06853-w.


References
1.
Lee D, GOLDBERG A . Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 1998; 8(10):397-403. DOI: 10.1016/s0962-8924(98)01346-4. View

2.
Jang H . Regulation of Protein Degradation by Proteasomes in Cancer. J Cancer Prev. 2019; 23(4):153-161. PMC: 6330989. DOI: 10.15430/JCP.2018.23.4.153. View

3.
Varshavsky A . Naming a targeting signal. Cell. 1991; 64(1):13-5. DOI: 10.1016/0092-8674(91)90202-a. View

4.
Lucas X, Ciulli A . Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Curr Opin Struct Biol. 2017; 44:101-110. DOI: 10.1016/j.sbi.2016.12.015. View

5.
Sarikas A, Hartmann T, Pan Z . The cullin protein family. Genome Biol. 2011; 12(4):220. PMC: 3218854. DOI: 10.1186/gb-2011-12-4-220. View