» Articles » PMID: 34209223

Prospects of Using High-Throughput Proteomics to Underpin the Discovery of Animal Host-Nematode Interactions

Overview
Journal Pathogens
Date 2021 Jul 2
PMID 34209223
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Parasitic nematodes impose a significant public health burden, and cause major economic losses to agriculture worldwide. Due to the widespread of anthelmintic resistance and lack of effective vaccines for most nematode species, there is an urgent need to discover novel therapeutic and vaccine targets, informed through an understanding of host-parasite interactions. Proteomics, underpinned by genomics, enables the global characterisation proteins expressed in a particular cell type, tissue and organism, and provides a key to insights at the host-parasite interface using advanced high-throughput mass spectrometry-based proteomic technologies. Here, we (i) review current mass-spectrometry-based proteomic methods, with an emphasis on a high-throughput 'bottom-up' approach; (ii) summarise recent progress in the proteomics of parasitic nematodes of animals, with a focus on molecules inferred to be involved in host-parasite interactions; and (iii) discuss future research directions that could enhance our knowledge and understanding of the molecular interplay between nematodes and host animals, in order to work toward new, improved methods for the treatment, diagnosis and control of nematodiases.

Citing Articles

The proteomic content of Varroa destructor gut varies according to the developmental stage of its host.

Piou V, Arafah K, Bocquet M, Bulet P, Vetillard A PLoS Pathog. 2025; 20(12):e1012802.

PMID: 39774526 PMC: 11723617. DOI: 10.1371/journal.ppat.1012802.


Enhanced Genomic and Transcriptomic Resources for and to Underpin the Discovery of Molecular Differences between Stages and Species.

Korhonen P, La Rosa G, Sumanam S, Gomez Morales M, Ludovisi A, Pozio E Int J Mol Sci. 2024; 25(13).

PMID: 39000473 PMC: 11242134. DOI: 10.3390/ijms25137366.


Inference of Essential Genes of the Parasite via Machine Learning.

Campos T, Korhonen P, Young N, Wang T, Song J, Marhoefer R Int J Mol Sci. 2024; 25(13).

PMID: 39000124 PMC: 11240989. DOI: 10.3390/ijms25137015.


Advancing omics data: bridging the gap with .

Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A Philos Trans R Soc Lond B Biol Sci. 2023; 379(1894):20220437.

PMID: 38008117 PMC: 10676819. DOI: 10.1098/rstb.2022.0437.


Comparative proteomics analysis of adult isolates from .

Liu G, Liu Q, Han Z, Wang P, Li Y Front Cell Infect Microbiol. 2023; 13:1087210.

PMID: 37009511 PMC: 10061303. DOI: 10.3389/fcimb.2023.1087210.


References
1.
Hansen E, Fromm B, Andersen S, Marcilla A, Andersen K, Borup A . Exploration of extracellular vesicles from provides evidence of parasite-host cross talk. J Extracell Vesicles. 2019; 8(1):1578116. PMC: 6383609. DOI: 10.1080/20013078.2019.1578116. View

2.
Hewitson J, Harcus Y, Murray J, Van Agtmaal M, Filbey K, Grainger J . Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics. 2011; 74(9):1573-94. PMC: 4794625. DOI: 10.1016/j.jprot.2011.06.002. View

3.
Armstrong S, Xia D, Bah G, Krishna R, Ngangyung H, LaCourse E . Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics. 2016; 15(8):2554-75. PMC: 4974336. DOI: 10.1074/mcp.M115.055640. View

4.
Coakley G, Maizels R, Buck A . Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends Parasitol. 2015; 31(10):477-489. PMC: 4685040. DOI: 10.1016/j.pt.2015.06.009. View

5.
Bartsch S, Hotez P, Asti L, Zapf K, Bottazzi M, Diemert D . The Global Economic and Health Burden of Human Hookworm Infection. PLoS Negl Trop Dis. 2016; 10(9):e0004922. PMC: 5015833. DOI: 10.1371/journal.pntd.0004922. View