» Articles » PMID: 34189432

Synchronous Effects of Targeted Mitochondrial Complex I Inhibitors on Tumor and Immune Cells Abrogate Melanoma Progression

Abstract

Metabolic heterogeneity within the tumor microenvironment promotes cancer cell growth and immune suppression. We determined the impact of mitochondria-targeted complex I inhibitors (Mito-CI) in melanoma. Mito-CI decreased mitochondria complex I oxygen consumption, Akt-FOXO signaling, blocked cell cycle progression, melanoma cell proliferation and tumor progression in an immune competent model system. Immune depletion revealed roles for T cells in the antitumor effects of Mito-CI. While Mito-CI preferentially accumulated within and halted tumor cell proliferation, it also elevated infiltration of activated effector T cells and decreased myeloid-derived suppressor cells (MDSC) as well as tumor-associated macrophages (TAM) in melanoma tumors . Anti-proliferative doses of Mito-CI inhibited differentiation, viability, and the suppressive function of bone marrow-derived MDSC and increased proliferation-independent activation of T cells. These data indicate that targeted inhibition of complex I has synchronous effects that cumulatively inhibits melanoma growth and promotes immune remodeling.

Citing Articles

Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide.

Rola M, Zielonka J, Smulik-Izydorczyk R, Pieta J, Pierzchala K, Sikora A Redox Biochem Chem. 2024; 10.

PMID: 39678628 PMC: 11637410. DOI: 10.1016/j.rbc.2024.100040.


and Its Potential Influence on Key Oncogenic Pathways.

Hamwi M, Elsayed E, Dabash H, Abuawad A, Aweer N, Al Zeir F Cells. 2024; 13(13.

PMID: 38994962 PMC: 11240681. DOI: 10.3390/cells13131109.


Mechanisms of myeloid-derived suppressor cell-mediated immunosuppression in colorectal cancer and related therapies.

Nie S, Jing Y, Lu L, Ren S, Ji G, Xu H World J Gastrointest Oncol. 2024; 16(5):1690-1704.

PMID: 38764816 PMC: 11099432. DOI: 10.4251/wjgo.v16.i5.1690.


Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma.

Mahmood M, Liu E, Shergold A, Tolla E, Tait-Mulder J, Huerta-Uribe A Nat Cancer. 2024; 5(4):659-672.

PMID: 38286828 PMC: 11056318. DOI: 10.1038/s43018-023-00721-w.


The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis.

Yang Y, An Y, Ren M, Wang H, Bai J, Du W Front Pharmacol. 2023; 14:1243613.

PMID: 37954849 PMC: 10635426. DOI: 10.3389/fphar.2023.1243613.


References
1.
Sukumar M, Liu J, Mehta G, Patel S, Roychoudhuri R, Crompton J . Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metab. 2015; 23(1):63-76. PMC: 4747432. DOI: 10.1016/j.cmet.2015.11.002. View

2.
Cheng G, Zielonka J, Ouari O, Lopez M, McAllister D, Boyle K . Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells. Cancer Res. 2016; 76(13):3904-15. PMC: 4930686. DOI: 10.1158/0008-5472.CAN-15-2534. View

3.
Brooks Robey R, Hay N . Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009; 19(1):25-31. PMC: 2814453. DOI: 10.1016/j.semcancer.2008.11.010. View

4.
Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K . Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer. Cell Metab. 2018; 28(1):87-103.e6. PMC: 6238219. DOI: 10.1016/j.cmet.2018.04.022. View

5.
Cheng G, Hardy M, Zielonka J, Weh K, Zielonka M, Boyle K . Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cells. Cancer Treat Res Commun. 2020; 25:100210. PMC: 7883397. DOI: 10.1016/j.ctarc.2020.100210. View