» Articles » PMID: 34184870

Mechanism of O-Atom Transfer from Nitrite: Nitric Oxide Release at Copper(II)

Overview
Journal Inorg Chem
Specialty Chemistry
Date 2021 Jun 29
PMID 34184870
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Nitric oxide (NO) is a key signaling molecule in health and disease. While nitrite acts as a reservoir of NO activity, mechanisms for NO release require further understanding. A series of electronically varied β-diketiminatocopper(II) nitrite complexes [Cu](κ-ON) react with a range of electronically tuned triarylphosphines PAr that release NO with the formation of O═PAr. Second-order rate constants are largest for electron-poor copper(II) nitrite and electron-rich phosphine pairs. Computational analysis reveals a transition-state structure energetically matched with experimentally determined activation barriers. The production of NO follows a pathway that involves nitrite isomerization at Cu from κ-ON to κ-NO followed by O-atom transfer (OAT) to form O═PAr and [Cu]-NO that releases NO upon PAr binding at Cu to form [Cu]-PAr. These findings illustrate important mechanistic considerations involved in NO formation from nitrite via OAT.

Citing Articles

Synthetically Reversible, Proton-Mediated Nitrite N-O Bond Cleavage at a Dicopper Site.

Martinez Fernandez J, Haji Seyed Javadi A, Teat S, Cundari T, Don Tilley T J Am Chem Soc. 2024; 146(50):34962-34969.

PMID: 39655620 PMC: 11664590. DOI: 10.1021/jacs.4c14642.


Thiol and HS-Mediated NO Generation from Nitrate at Copper(II).

Ghosh P, Stauffer M, Ahmed M, Bertke J, Staples R, Warren T J Am Chem Soc. 2023; 145(22):12007-12012.

PMID: 37224264 PMC: 10367543. DOI: 10.1021/jacs.3c00394.


NO Coupling at Copper to -Hyponitrite: NO Formation via Protonation and H-Atom Transfer.

Ghosh P, Stauffer M, Hosseininasab V, Kundu S, Bertke J, Cundari T J Am Chem Soc. 2022; 144(33):15093-15099.

PMID: 35948086 PMC: 9536194. DOI: 10.1021/jacs.2c04033.

References
1.
Sanders B, Hassan S, Harrop T . NO2(-) activation and reduction to NO by a nonheme Fe(NO2)2 complex. J Am Chem Soc. 2014; 136(29):10230-3. DOI: 10.1021/ja505236x. View

2.
Maji R, Mishra S, Bhandari A, Singh R, Olmstead M, Patra A . A Copper(II) Nitrite That Exhibits Change of Nitrite Binding Mode and Formation of Copper(II) Nitrosyl Prior to Nitric Oxide Evolution. Inorg Chem. 2018; 57(3):1550-1561. DOI: 10.1021/acs.inorgchem.7b02897. View

3.
Solomon E, Heppner D, Johnston E, Ginsbach J, Cirera J, Qayyum M . Copper active sites in biology. Chem Rev. 2014; 114(7):3659-853. PMC: 4040215. DOI: 10.1021/cr400327t. View

4.
de la Cruz C, Sheppard N . A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. Spectrochim Acta A Mol Biomol Spectrosc. 2010; 78(1):7-28. DOI: 10.1016/j.saa.2010.08.001. View

5.
Farver O, Eady R, Abraham Z, Pecht I . The intramolecular electron transfer between copper sites of nitrite reductase: a comparison with ascorbate oxidase. FEBS Lett. 1998; 436(2):239-42. DOI: 10.1016/s0014-5793(98)01120-x. View