» Articles » PMID: 34179894

Predicting Kidney Transplant Survival Using Multiple Feature Representations for HLAs

Overview
Publisher Springer
Date 2021 Jun 28
PMID 34179894
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Kidney transplantation can significantly enhance living standards for people suffering from end-stage renal disease. A significant factor that affects graft survival time (the time until the transplant fails and the patient requires another transplant) for kidney transplantation is the compatibility of the Human Leukocyte Antigens (HLAs) between the donor and recipient. In this paper, we propose new biologically-relevant feature representations for incorporating HLA information into machine learning-based survival analysis algorithms. We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find that they improve prediction accuracy by about 1%, modest at the patient level but potentially significant at a societal level. Accurate prediction of survival times can improve transplant survival outcomes, enabling better allocation of donors to recipients and reducing the number of re-transplants due to graft failure with poorly matched donors.

Citing Articles

Analysing lapsing rates among first-time blood donors at a blood centre in Zimbabwe using survival analysis.

Chikobvu D, Chideme C Pan Afr Med J. 2024; 47:211.

PMID: 39247773 PMC: 11380622. DOI: 10.11604/pamj.2024.47.211.39015.


Artificial Intelligence Algorithms in Health Care: Is the Current Food and Drug Administration Regulation Sufficient?.

Mashar M, Chawla S, Chen F, Lubwama B, Patel K, Kelshiker M JMIR AI. 2024; 2:e42940.

PMID: 38875544 PMC: 11041443. DOI: 10.2196/42940.


A Latent Space Model for HLA Compatibility Networks in Kidney Transplantation.

Huang Z, Xu K Proceedings (IEEE Int Conf Bioinformatics Biomed). 2024; 2022:1020-1027.

PMID: 38550623 PMC: 10977095. DOI: 10.1109/bibm55620.2022.9995514.


Predicting kidney transplant survival using multiple feature representations for HLAs.

Nemati M, Zhang H, Sloma M, Bekbolsynov D, Wang H, Stepkowski S Artif Intell Med. 2023; 145:102675.

PMID: 37925205 PMC: 10970101. DOI: 10.1016/j.artmed.2023.102675.


Empirical Comparison of Continuous and Discrete-time Representations for Survival Prediction.

Sloma M, Syed F, Nemati M, Xu K Proc Mach Learn Res. 2021; 146:118-131.

PMID: 34179790 PMC: 8232898.

References
1.
Mark E, Goldsman D, Gurbaxani B, Keskinocak P, Sokol J . Using machine learning and an ensemble of methods to predict kidney transplant survival. PLoS One. 2019; 14(1):e0209068. PMC: 6326487. DOI: 10.1371/journal.pone.0209068. View

2.
Harrell Jr F, Califf R, Pryor D, Lee K, Rosati R . Evaluating the yield of medical tests. JAMA. 1982; 247(18):2543-6. View

3.
Segev D, Gentry S, Warren D, Reeb B, Montgomery R . Kidney paired donation and optimizing the use of live donor organs. JAMA. 2005; 293(15):1883-90. DOI: 10.1001/jama.293.15.1883. View

4.
Wolfe R, McCullough K, Leichtman A . Predictability of survival models for waiting list and transplant patients: calculating LYFT. Am J Transplant. 2009; 9(7):1523-7. DOI: 10.1111/j.1600-6143.2009.02708.x. View

5.
Rao P, Schaubel D, Guidinger M, Andreoni K, Wolfe R, Merion R . A comprehensive risk quantification score for deceased donor kidneys: the kidney donor risk index. Transplantation. 2009; 88(2):231-6. DOI: 10.1097/TP.0b013e3181ac620b. View