» Articles » PMID: 34178434

Antiviral Efficacy of Short-hairpin RNAs and Artificial MicroRNAs Targeting Foot-and-mouth Disease Virus

Overview
Journal PeerJ
Date 2021 Jun 28
PMID 34178434
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D). Three target sequences were predicted within 3D considering RNA accessibility as a major criterion. The silencing efficacy of short-hairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs) targeting the selected sequences was confirmed in fluorescent reporter assays. Furthermore, BHK-21 cells transiently expressing shRNAs or amiRNAs proved 70 to >95% inhibition of FMDV growth. Interestingly, dual expression of amiRNAs did not improve FMDV silencing. Lastly, stable cell lines constitutively expressing amiRNAs were established and characterized in terms of antiviral activity against FMDV. As expected, viral replication in these cell lines was delayed. These results show that the target RNA-accessibility-guided approach for RNAi design rendered efficient amiRNAs that constrain FMDV replication. The application of amiRNAs to complement FMDV vaccination in specific epidemiological scenarios shall be explored further.

Citing Articles

Women in the European Virus Bioinformatics Center.

Hufsky F, Abecasis A, Agudelo-Romero P, Bletsa M, Brown K, Claus C Viruses. 2022; 14(7).

PMID: 35891501 PMC: 9319252. DOI: 10.3390/v14071522.

References
1.
Low J, Knoepfel S, Watts J, Brake O, Berkhout B, Weeks K . SHAPE-directed discovery of potent shRNA inhibitors of HIV-1. Mol Ther. 2012; 20(4):820-8. PMC: 3321596. DOI: 10.1038/mt.2011.299. View

2.
Grigera P, Tisminetzky S . Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology. 1984; 136(1):10-9. DOI: 10.1016/0042-6822(84)90243-5. View

3.
Liu Y, Haasnoot J, Brake O, Berkhout B, Konstantinova P . Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 2008; 36(9):2811-24. PMC: 2396423. DOI: 10.1093/nar/gkn109. View

4.
Pengyan W, Yan R, Zhiru G, Chuangfu C . Inhibition of foot-and-mouth disease virus replication in vitro and in vivo by small interfering RNA. Virol J. 2008; 5:86. PMC: 2515107. DOI: 10.1186/1743-422X-5-86. View

5.
Grubman M, Baxt B . Foot-and-mouth disease. Clin Microbiol Rev. 2004; 17(2):465-93. PMC: 387408. DOI: 10.1128/CMR.17.2.465-493.2004. View