» Articles » PMID: 34168797

Broad-band Spectroscopy of a Vanadyl Porphyrin: a Model Electronuclear Spin Qudit

Overview
Journal Chem Sci
Specialty Chemistry
Date 2021 Jun 25
PMID 34168797
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

We explore how to encode more than a qubit in vanadyl porphyrin molecules hosting a = 1/2 electronic spin coupled to a = 7/2 nuclear spin. The spin Hamiltonian and its parameters, as well as the spin dynamics, have been determined a combination of electron paramagnetic resonance, heat capacity, magnetization and on-chip magnetic spectroscopy experiments performed on single crystals. We find low temperature spin coherence times of micro-seconds and spin relaxation times longer than a second. For sufficiently strong magnetic fields ( > 0.1 T, corresponding to resonance frequencies of 9-10 GHz) these properties make vanadyl porphyrin molecules suitable qubit realizations. The presence of multiple equispaced nuclear spin levels then merely provides 8 alternatives to define the '1' and '0' basis states. For lower magnetic fields ( < 0.1 T), and lower frequencies (<2 GHz), we find spectroscopic signatures of a sizeable electronuclear entanglement. This effect generates a larger set of allowed transitions between different electronuclear spin states and removes their degeneracies. Under these conditions, we show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a = 16 qudit. These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities, such as quantum simulations and, especially, quantum error correction at the molecular level.

Citing Articles

Localized Nanoscale Formation of Vanadyl Porphyrin 2D MOF Nanosheets and Their Optimal Coupling to Lumped Element Superconducting Resonators.

Gimeno I, Luis F, Marcuello C, Pallares M, Lostao A, de Ory M J Phys Chem C Nanomater Interfaces. 2025; 129(1):973-982.

PMID: 39811435 PMC: 11726679. DOI: 10.1021/acs.jpcc.4c07265.


Room-Temperature Optical Spin Polarization of an Electron Spin Qudit in a Vanadyl-Free Base Porphyrin Dimer.

Privitera A, Chiesa A, Santanni F, Carella A, Ranieri D, Caneschi A J Am Chem Soc. 2024; 147(1):331-341.

PMID: 39681297 PMC: 11726572. DOI: 10.1021/jacs.4c10632.


Quantum Mimicry With Inorganic Chemistry.

Campanella A, Ungor O, Zadrozny J Comments Mod Chem A Comments Inorg Chem. 2024; 44(1):11-53.

PMID: 38515928 PMC: 10954259. DOI: 10.1080/02603594.2023.2173588.


Quantum spin coherence and electron spin distribution channels in vanadyl-containing lantern complexes.

Imperato M, Nicolini A, Borsari M, Briganti M, Chiesa M, Liao Y Inorg Chem Front. 2024; 11(1):186-195.

PMID: 38221947 PMC: 10782212. DOI: 10.1039/d3qi01806g.


A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies.

Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C Nanomaterials (Basel). 2023; 13(18).

PMID: 37764614 PMC: 10536909. DOI: 10.3390/nano13182585.


References
1.
Gimeno I, Kersten W, Pallares M, Hermosilla P, Martinez-Perez M, Jenkins M . Enhanced Molecular Spin-Photon Coupling at Superconducting Nanoconstrictions. ACS Nano. 2020; 14(7):8707-8715. DOI: 10.1021/acsnano.0c03167. View

2.
Liu J, Mrozek J, Myers W, Timco G, Winpenny R, Kintzel B . Electric Field Control of Spins in Molecular Magnets. Phys Rev Lett. 2019; 122(3):037202. DOI: 10.1103/PhysRevLett.122.037202. View

3.
Atzori M, Sessoli R . The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J Am Chem Soc. 2019; 141(29):11339-11352. DOI: 10.1021/jacs.9b00984. View

4.
Atzori M, Benci S, Morra E, Tesi L, Chiesa M, Torre R . Structural Effects on the Spin Dynamics of Potential Molecular Qubits. Inorg Chem. 2017; 57(2):731-740. DOI: 10.1021/acs.inorgchem.7b02616. View

5.
Moreno-Pineda E, Godfrin C, Balestro F, Wernsdorfer W, Ruben M . Molecular spin qudits for quantum algorithms. Chem Soc Rev. 2017; 47(2):501-513. DOI: 10.1039/c5cs00933b. View