6.
Graser T, Leisner H, TIEDT N
. Absence of role of endothelium in the response of isolated porcine coronary arteries to acetylcholine. Cardiovasc Res. 1986; 20(4):299-302.
DOI: 10.1093/cvr/20.4.299.
View
7.
Gogas B, McDaniel M, Samady H, King 3rd S
. Novel drug-eluting stents for coronary revascularization. Trends Cardiovasc Med. 2014; 24(7):305-13.
DOI: 10.1016/j.tcm.2014.07.004.
View
8.
Stone G, Ellis S, Gori T, Metzger D, Stein B, Erickson M
. Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet. 2018; 392(10157):1530-1540.
DOI: 10.1016/S0140-6736(18)32283-9.
View
9.
Aukrust P, Halvorsen B, Yndestad A, Ueland T, Oie E, Otterdal K
. Chemokines and cardiovascular risk. Arterioscler Thromb Vasc Biol. 2008; 28(11):1909-19.
DOI: 10.1161/ATVBAHA.107.161240.
View
10.
Otsuka F, Pacheco E, Perkins L, Lane J, Wang Q, Kamberi M
. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014; 7(3):330-42.
DOI: 10.1161/CIRCINTERVENTIONS.113.000990.
View
11.
Chen D, Su Z, Weng L, Cao L, Chen C, Zeng S
. Effect of inflammation on endothelial cells induced by poly-L-lactic acid degradation in vitro and in vivo. J Biomater Sci Polym Ed. 2018; 29(15):1909-1919.
DOI: 10.1080/09205063.2018.1517858.
View
12.
Yamaji K, Ueki Y, Souteyrand G, Daemen J, Wiebe J, Nef H
. Mechanisms of Very Late Bioresorbable Scaffold Thrombosis: The INVEST Registry. J Am Coll Cardiol. 2017; 70(19):2330-2344.
DOI: 10.1016/j.jacc.2017.09.014.
View
13.
Jufri N, Mohamedali A, Avolio A, Baker M
. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell. 2015; 7:8.
PMC: 4575492.
DOI: 10.1186/s13221-015-0033-z.
View
14.
Tsoi S, Zhou C, Grant J, Pasternak J, Dobrinsky J, Rigault P
. Development of a porcine (Sus scofa) embryo-specific microarray: array annotation and validation. BMC Genomics. 2012; 13:370.
PMC: 3468353.
DOI: 10.1186/1471-2164-13-370.
View
15.
Stone G, Gao R, Kimura T, Kereiakes D, Ellis S, Onuma Y
. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016; 387(10025):1277-89.
DOI: 10.1016/S0140-6736(15)01039-9.
View
16.
Stone G, Kimura T, Gao R, Kereiakes D, Ellis S, Onuma Y
. Time-Varying Outcomes With the Absorb Bioresorbable Vascular Scaffold During 5-Year Follow-up: A Systematic Meta-analysis and Individual Patient Data Pooled Study. JAMA Cardiol. 2019; 4(12):1261-1269.
PMC: 6777269.
DOI: 10.1001/jamacardio.2019.4101.
View
17.
Serruys P, Chevalier B, Sotomi Y, Cequier A, Carrie D, Piek J
. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016; 388(10059):2479-2491.
DOI: 10.1016/S0140-6736(16)32050-5.
View
18.
Gogas B, Yang B, Passerini T, Veneziani A, Piccinelli M, Esposito G
. Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept. Glob Cardiol Sci Pract. 2015; 2014(4):428-36.
PMC: 4355516.
DOI: 10.5339/gcsp.2014.56.
View
19.
Stone G, Abizaid A, Onuma Y, Seth A, Gao R, Ormiston J
. Effect of Technique on Outcomes Following Bioresorbable Vascular Scaffold Implantation: Analysis From the ABSORB Trials. J Am Coll Cardiol. 2017; 70(23):2863-2874.
DOI: 10.1016/j.jacc.2017.09.1106.
View
20.
Ito T, Ikeda U
. Inflammatory cytokines and cardiovascular disease. Curr Drug Targets Inflamm Allergy. 2003; 2(3):257-65.
DOI: 10.2174/1568010033484106.
View