» Articles » PMID: 34163990

Accelerated Reactions of Amines with Carbon Dioxide Driven by Superacid at the Microdroplet Interface

Overview
Journal Chem Sci
Specialty Chemistry
Date 2021 Jun 24
PMID 34163990
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.

Citing Articles

The gas|liquid interface eclipses the liquid|liquid interface for glucose oxidase rate acceleration in microdroplets.

Krushinski L, Herchenbach P, Dick J Proc Natl Acad Sci U S A. 2024; 121(51):e2416353121.

PMID: 39652752 PMC: 11665866. DOI: 10.1073/pnas.2416353121.


Reaction nanoscopy of ion emission from sub-wavelength propanediol droplets.

Rosenberger P, Dagar R, Zhang W, Majumdar A, Neuhaus M, Ihme M Nanophotonics. 2024; 12(10):1823-1831.

PMID: 39635141 PMC: 11501279. DOI: 10.1515/nanoph-2022-0714.


Rapid Exploration of Chemical Space by High-Throughput Desorption Electrospray Ionization Mass Spectrometry.

Huang K, Morato N, Feng Y, Toney A, Cooks R J Am Chem Soc. 2024; 146(48):33112-33120.

PMID: 39561979 PMC: 11622223. DOI: 10.1021/jacs.4c11037.


Enhanced condensation kinetics in aqueous microdroplets driven by coupled surface reactions and gas-phase partitioning.

Li M, Yang S, Rathi M, Kumar S, Dutcher C, Grassian V Chem Sci. 2024; 15(33):13429-13441.

PMID: 39183898 PMC: 11339779. DOI: 10.1039/d4sc03014a.


Reaction acceleration at the surface of a levitated droplet by vapor dosing from a partner droplet.

Qiu L, Li X, Holden D, Cooks R Chem Sci. 2024; 15(31):12277-12283.

PMID: 39118618 PMC: 11304536. DOI: 10.1039/d4sc03528c.


References
1.
Yan X, Bain R, Cooks R . Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry. Angew Chem Int Ed Engl. 2016; 55(42):12960-12972. DOI: 10.1002/anie.201602270. View

2.
Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X . Sorbents for the Direct Capture of CO from Ambient Air. Angew Chem Int Ed Engl. 2019; 59(18):6984-7006. DOI: 10.1002/anie.201906756. View

3.
Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R . Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol. 2009; 43(16):6427-33. DOI: 10.1021/es901376a. View

4.
Banerjee S, Zare R . Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets. Angew Chem Int Ed Engl. 2015; 54(49):14795-9. DOI: 10.1002/anie.201507805. View

5.
Gao D, Jin F, Lee J, Zare R . Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer-Villiger reactions. Chem Sci. 2020; 10(48):10974-10978. PMC: 7439776. DOI: 10.1039/c9sc05112k. View