» Articles » PMID: 34163921

2D Framework Materials for Energy Applications

Overview
Journal Chem Sci
Specialty Chemistry
Date 2021 Jun 24
PMID 34163921
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years a massive increase in publications on conventional 2D materials (graphene, h-BN, MoS) is documented, accompanied by the transfer of the 2D concept to porous (crystalline) materials, such as ordered 2D layered polymers, covalent-organic frameworks, and metal-organic frameworks. Over the years, the 3D frameworks have gained a lot of attention for use in applications, ranging from electronic devices to catalysis, and from information to separation technologies, mostly due to the modular construction concept and exceptionally high porosity. A key challenge lies in the implementation of these materials into devices arising from the deliberate manipulation of properties upon delamination of their layered counterparts, including an increase in surface area, higher diffusivity, better access to surface sites and a change in the band structure. Within this minireview, we would like to highlight recent achievements in the synthesis of 2D framework materials and their advantages for certain applications, and give some future perspectives.

Citing Articles

Two-dimensional conjugated metal-organic frameworks for electrochemical energy conversion and storage.

Li X, Su X, Su T, Chen L, Su Z Chem Sci. 2025; .

PMID: 40060100 PMC: 11886991. DOI: 10.1039/d5sc00463b.


Size Engineering of TiCT Nanosheets for Enhanced Supercapacitance Performance.

Liu H, Chang X, Li L, Zhang M Molecules. 2025; 30(2).

PMID: 39860112 PMC: 11767968. DOI: 10.3390/molecules30020241.


From 0D to 2D: microwave-assisted synthesis of electrically conductive metal-organic frameworks with controlled morphologies.

Fang X, Choi J, Lu C, Reichert E, Pham H, Park J Chem Sci. 2025; 16(7):3168-3172.

PMID: 39829974 PMC: 11740778. DOI: 10.1039/d4sc07025a.


Entropy Engineering of 2D Materials.

Mei H, Zhang Y, Zhang P, Ricciardulli A, Samori P, Yang S Adv Sci (Weinh). 2024; 11(46):e2409404.

PMID: 39443829 PMC: 11633479. DOI: 10.1002/advs.202409404.


Coexistence of Redox-Active Metal and Ligand Sites in Copper-Based Two-Dimensional Conjugated Metal-Organic Frameworks as Active Materials for Battery-Supercapacitor Hybrid Systems.

Bagheri A, Bellani S, Beydaghi H, Wang Z, Morag A, Zappia M ChemSusChem. 2024; 18(4):e202401454.

PMID: 39302821 PMC: 11826127. DOI: 10.1002/cssc.202401454.


References
1.
Shi X, Ma D, Xu F, Zhang Z, Wang Y . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chem Sci. 2021; 11(4):989-996. PMC: 8146026. DOI: 10.1039/c9sc05082e. View

2.
Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S . Electric field effect in atomically thin carbon films. Science. 2004; 306(5696):666-9. DOI: 10.1126/science.1102896. View

3.
Yusran Y, Li H, Guan X, Li D, Tang L, Xue M . Exfoliated Mesoporous 2D Covalent Organic Frameworks for High-Rate Electrochemical Double-Layer Capacitors. Adv Mater. 2020; 32(8):e1907289. DOI: 10.1002/adma.201907289. View

4.
Hou J, Zhang H, Simon G, Wang H . Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Adv Mater. 2019; 32(18):e1902009. DOI: 10.1002/adma.201902009. View

5.
Chi Y, Yang W, Xing Y, Li Y, Pang H, Xu Q . Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale. 2020; 12(19):10685-10692. DOI: 10.1039/d0nr02016h. View