On the Location of Lewis Acidic Aluminum in Zeolite Mordenite and the Role of Framework-associated Aluminum in Mediating the Switch Between Brønsted and Lewis Acidity
Overview
Affiliations
Lewis acidic aluminum in zeolites, particularly acidity that is inherent to the framework, is an indeterminate concept. A fraction of framework aluminum changes geometry to octahedral coordination in the proton form of zeolite mordenite. Such octahedrally coordinated aluminum is the precursor of a Lewis acid site and its formation is accompanied by a loss in Brønsted acidity. Herein, we show that such Lewis acid sites have a preferred location in the pore structure of mordenite. A greater proportion of these Lewis acid sites resides in the side-pockets than in the main channel. By reverting the octahedrally coordinated aluminum back to a tetrahedral geometry, the corresponding Brønsted acid sites are restored with a concomitant loss in the ability to form Lewis acid sites. Thereby, reversible octahedral-tetrahedral aluminum coordination provides a means to indirectly switch between Lewis and Brønsted acidity. This phenomenon is unique to Lewis acidity that is inherent to the framework, thereby distinguishing it from Lewis acidity originating from extra-framework species. Furthermore, the transformation of framework aluminum into octahedral coordination is decoupled from the generation of distorted tetrahedrally coordinated aluminum, where the latter gives rise to the IR band at 3660 cm in the OH stretching region.
Evaluation of Zeolite Composites by IR and NMR Spectroscopy.
Dalena F, Dib E, Onida B, Ferrarelli G, Daturi M, Giordano G Molecules. 2024; 29(18).
PMID: 39339445 PMC: 11433990. DOI: 10.3390/molecules29184450.
Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone.
Jayakumari M, Krishnan C RSC Adv. 2024; 14(30):21453-21463.
PMID: 38979450 PMC: 11228575. DOI: 10.1039/d4ra03113j.
The need for modelling of Al NMR in zeolites: the effect of temperature, topology and water.
Lei C, Erlebach A, Brivio F, Grajciar L, Tosner Z, Heard C Chem Sci. 2023; 14(34):9101-9113.
PMID: 37655014 PMC: 10466278. DOI: 10.1039/d3sc02492j.
The concept of active site in heterogeneous catalysis.
Vogt C, Weckhuysen B Nat Rev Chem. 2023; 6(2):89-111.
PMID: 37117296 DOI: 10.1038/s41570-021-00340-y.
Antunes M, Silva A, Fernandes A, Ribeiro F, Neves P, Pillinger M Front Chem. 2022; 10:1006981.
PMID: 36247668 PMC: 9558274. DOI: 10.3389/fchem.2022.1006981.