» Articles » PMID: 34163020

The Origin of Human Mutation in Light of Genomic Data

Overview
Journal Nat Rev Genet
Specialty Genetics
Date 2021 Jun 24
PMID 34163020
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Despite years of active research into the role of DNA repair and replication in mutagenesis, surprisingly little is known about the origin of spontaneous human mutation in the germ line. With the advent of high-throughput sequencing, genome-scale data have revealed statistical properties of mutagenesis in humans. These properties include variation of the mutation rate and spectrum along the genome at different scales in relation to epigenomic features and dependency on parental age. Moreover, mutations originated in mothers are less frequent than mutations originated in fathers and have a distinct genomic distribution. Statistical analyses that interpret these patterns in the context of known biochemistry can provide mechanistic models of mutagenesis in humans.

Citing Articles

Characterizing the Rates and Patterns of De Novo Germline Mutations in the Aye-Aye (Daubentonia madagascariensis).

Versoza C, Ehmke E, Jensen J, Pfeifer S Mol Biol Evol. 2025; 42(3).

PMID: 40048663 PMC: 11884812. DOI: 10.1093/molbev/msaf034.


Quantifying cell divisions along evolutionary lineages in cancer.

Blohmer M, Cheek D, Hung W, Kessler M, Chatzidimitriou F, Wang J Nat Genet. 2025; 57(3):706-717.

PMID: 39905260 DOI: 10.1038/s41588-025-02078-5.


Localization and discrimination of GG mismatch in duplex DNA by synthetic ligand-enhanced protein nanopore analysis.

Lyu W, Zhu J, Huang X, Chinappi M, Garoli D, Gui C Nucleic Acids Res. 2024; 52(20):12191-12200.

PMID: 39413157 PMC: 11551735. DOI: 10.1093/nar/gkae884.


Characterization and distribution of de novo mutations in the zebra finch.

Liang X, Yang S, Wang D, Knief U Commun Biol. 2024; 7(1):1243.

PMID: 39358581 PMC: 11447093. DOI: 10.1038/s42003-024-06945-5.


Little impact of new mutations on mammalian trait variation.

Dumont B PLoS Biol. 2024; 22(9):e3002825.

PMID: 39331588 PMC: 11432828. DOI: 10.1371/journal.pbio.3002825.


References
1.
Yang Z . PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007; 24(8):1586-91. DOI: 10.1093/molbev/msm088. View

2.
Kosmicki J, Samocha K, Howrigan D, Sanders S, Slowikowski K, Lek M . Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet. 2017; 49(4):504-510. PMC: 5496244. DOI: 10.1038/ng.3789. View

3.
Lawrence M, Stojanov P, Polak P, Kryukov G, Cibulskis K, Sivachenko A . Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499(7457):214-218. PMC: 3919509. DOI: 10.1038/nature12213. View

4.
Hoang M, Chen C, Sidorenko V, He J, Dickman K, Yun B . Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med. 2013; 5(197):197ra102. PMC: 3973132. DOI: 10.1126/scitranslmed.3006200. View

5.
Poon S, Pang S, McPherson J, Yu W, Huang K, Guan P . Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med. 2013; 5(197):197ra101. DOI: 10.1126/scitranslmed.3006086. View