» Articles » PMID: 34162999

A Neural Crest Cell Isotropic-to-nematic Phase Transition in the Developing Mammalian Gut

Overview
Journal Commun Biol
Specialty Biology
Date 2021 Jun 24
PMID 34162999
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

While the colonization of the embryonic gut by neural crest cells has been the subject of intense scrutiny over the past decades, we are only starting to grasp the morphogenetic transformations of the enteric nervous system happening in the fetal stage. Here, we show that enteric neural crest cell transit during fetal development from an isotropic cell network to a square grid comprised of circumferentially-oriented cell bodies and longitudinally-extending interganglionic fibers. We present ex-vivo dynamic time-lapse imaging of this isotropic-to-nematic phase transition and show that it occurs concomitantly with circular smooth muscle differentiation in all regions of the gastrointestinal tract. Using conditional mutant embryos with enteric neural crest cells depleted of β1-integrins, we show that cell-extracellular matrix anchorage is necessary for ganglia to properly reorient. We demonstrate by whole mount second harmonic generation imaging that fibrous, circularly-spun collagen I fibers are in direct contact with neural crest cells during the orientation transition, providing an ideal orientation template. We conclude that smooth-muscle associated extracellular matrix drives a critical reorientation transition of the enteric nervous system in the mammalian fetus.

Citing Articles

Calcium wave dynamics in the embryonic mouse gut mesenchyme: impact on smooth muscle differentiation.

Chevalier N, Zig L, Gomis A, Amedzrovi Agbesi R, El Merhie A, Pontoizeau L Commun Biol. 2024; 7(1):1277.

PMID: 39375515 PMC: 11458798. DOI: 10.1038/s42003-024-06976-y.


Tetrodotoxin-resistant mechanosensitivity and L-type calcium channel-mediated spontaneous calcium activity in enteric neurons.

Amedzrovi Agbesi R, El Merhie A, Spencer N, Hibberd T, Chevalier N Exp Physiol. 2024; 109(9):1545-1556.

PMID: 38979869 PMC: 11363105. DOI: 10.1113/EP091977.


Spatial gene expression profile of Wnt-signaling components in the murine enteric nervous system.

Scharr M, Hirt B, Neckel P Front Immunol. 2024; 15:1302488.

PMID: 38322254 PMC: 10846065. DOI: 10.3389/fimmu.2024.1302488.


Dickkopf1 induces enteric neurogenesis and gliogenesis in vitro if apoptosis is evaded.

Scharr M, Scherer S, Hirt B, Neckel P Commun Biol. 2023; 6(1):808.

PMID: 37532804 PMC: 10397193. DOI: 10.1038/s42003-023-05072-x.


Regional cytoarchitecture of the adult and developing mouse enteric nervous system.

Hamnett R, Dershowitz L, Sampathkumar V, Wang Z, Gomez-Frittelli J, DE Andrade V Curr Biol. 2022; 32(20):4483-4492.e5.

PMID: 36070775 PMC: 9613618. DOI: 10.1016/j.cub.2022.08.030.


References
1.
Nagy N, Barad C, Hotta R, Bhave S, Arciero E, Dora D . Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development. 2018; 145(9). PMC: 5992596. DOI: 10.1242/dev.160317. View

2.
Tanano A, Hamada Y, Takamido S, Kataoka Y, Watanabe J, Kamiyama Y . Structural development of PGP9.5-immunopositive myenteric plexus in embryonic rats. Anat Embryol (Berl). 2005; 209(4):341-8. DOI: 10.1007/s00429-005-0453-2. View

3.
Chen X, Nadiarynkh O, Plotnikov S, Campagnola P . Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012; 7(4):654-69. PMC: 4337962. DOI: 10.1038/nprot.2012.009. View

4.
Huycke T, Miller B, Gill H, Nerurkar N, Sprinzak D, Mahadevan L . Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell. 2019; 179(1):90-105.e21. PMC: 6756183. DOI: 10.1016/j.cell.2019.08.041. View

5.
Chevalier N, Fleury V, Dufour S, Proux-Gillardeaux V, Asnacios A . Emergence and development of gut motility in the chicken embryo. PLoS One. 2017; 12(2):e0172511. PMC: 5319669. DOI: 10.1371/journal.pone.0172511. View