» Articles » PMID: 34138553

Study of the Decoherence Correction Derived from the Exact Factorization Approach for Nonadiabatic Dynamics

Overview
Specialties Biochemistry
Chemistry
Date 2021 Jun 17
PMID 34138553
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

We present a detailed study of the decoherence correction to surface hopping that was recently derived from the exact factorization approach. Ab initio multiple spawning calculations that use the same initial conditions and the same electronic structure method are used as a reference for three molecules: ethylene, the methaniminium cation, and fulvene, for which nonadiabatic dynamics follows a photoexcitation. A comparison with the Granucci-Persico energy-based decoherence correction and the augmented fewest-switches surface-hopping scheme shows that the three decoherence-corrected methods operate on individual trajectories in a qualitatively different way, but the results averaged over trajectories are similar for these systems.

Citing Articles

Toward a Correct Description of Initial Electronic Coherence in Nonadiabatic Dynamics Simulations.

Mannouch J, Kelly A J Phys Chem Lett. 2024; 15(46):11687-11695.

PMID: 39540913 PMC: 11587105. DOI: 10.1021/acs.jpclett.4c02418.


Quantum Quality with Classical Cost: Nonadiabatic Dynamics Simulations Using the Mapping Approach to Surface Hopping.

Mannouch J, Kelly A J Phys Chem Lett. 2024; 15(22):5814-5823.

PMID: 38781480 PMC: 11163471. DOI: 10.1021/acs.jpclett.4c00535.


What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm.

Janos J, Slavicek P J Chem Theory Comput. 2023; 19(22):8273-8284.

PMID: 37939301 PMC: 10688183. DOI: 10.1021/acs.jctc.3c00908.


Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.

Mandal A, Taylor M, Weight B, Koessler E, Li X, Huo P Chem Rev. 2023; 123(16):9786-9879.

PMID: 37552606 PMC: 10450711. DOI: 10.1021/acs.chemrev.2c00855.


Exact Factorization Adventures: A Promising Approach for Non-Bound States.

Arribas E, Agostini F, Maitra N Molecules. 2022; 27(13).

PMID: 35807246 PMC: 9267945. DOI: 10.3390/molecules27134002.


References
1.
Granucci G, Persico M . Critical appraisal of the fewest switches algorithm for surface hopping. J Chem Phys. 2007; 126(13):134114. DOI: 10.1063/1.2715585. View

2.
Lee I, Ha J, Han D, Kim T, Moon S, Min S . PyUNIxMD: A Python-based excited state molecular dynamics package. J Comput Chem. 2021; 42(24):1755-1766. PMC: 8362049. DOI: 10.1002/jcc.26711. View

3.
Subotnik J, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N . Understanding the Surface Hopping View of Electronic Transitions and Decoherence. Annu Rev Phys Chem. 2016; 67:387-417. DOI: 10.1146/annurev-physchem-040215-112245. View

4.
Gossel G, Lacombe L, Maitra N . On the numerical solution of the exact factorization equations. J Chem Phys. 2019; 150(15):154112. DOI: 10.1063/1.5090802. View

5.
Filatov M, Min S, Choi C . Theoretical modelling of the dynamics of primary photoprocess of cyclopropanone. Phys Chem Chem Phys. 2019; 21(5):2489-2498. DOI: 10.1039/c8cp07104g. View