6.
Ilyaskin A, Korbmacher C, Diakov A
. Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis. J Biol Chem. 2021; 296:100404.
PMC: 7973139.
DOI: 10.1016/j.jbc.2021.100404.
View
7.
Khailaie S, Rowshanravan B, Robert P, Waters E, Halliday N, Badillo Herrera J
. Characterization of CTLA4 Trafficking and Implications for Its Function. Biophys J. 2018; 115(7):1330-1343.
PMC: 6170599.
DOI: 10.1016/j.bpj.2018.08.020.
View
8.
Stamper I, Wang X
. Integrated multiscale mathematical modeling of insulin secretion reveals the role of islet network integrity for proper oscillatory glucose-dose response. J Theor Biol. 2019; 475:1-24.
DOI: 10.1016/j.jtbi.2019.05.007.
View
9.
Li Y, Wang P, Xu J, Desir G
. Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism. Am J Physiol Cell Physiol. 2006; 290(2):C345-51.
DOI: 10.1152/ajpcell.00091.2005.
View
10.
Mikulovic S, Restrepo C, Siwani S, Bauer P, Pupe S, Tort A
. Ventral hippocampal OLM cells control type 2 theta oscillations and response to predator odor. Nat Commun. 2018; 9(1):3638.
PMC: 6128904.
DOI: 10.1038/s41467-018-05907-w.
View
11.
Marunaka Y, Hagiwara N, TOHDA H
. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6). Am J Physiol. 1992; 263(3 Pt 2):F392-400.
DOI: 10.1152/ajprenal.1992.263.3.F392.
View
12.
Crudden C, Song D, Cismas S, Trocme E, Pasca S, Calin G
. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells. 2019; 8(10).
PMC: 6829878.
DOI: 10.3390/cells8101223.
View
13.
Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Inui T
. Actions of Quercetin, a Polyphenol, on Blood Pressure. Molecules. 2017; 22(2).
PMC: 6155806.
DOI: 10.3390/molecules22020209.
View
14.
Marunaka R, Taruno A, Yamamoto T, Kanamura N, Marunaka Y
. Action of Protein Tyrosine Kinase Inhibitors on the Hypotonicity-Stimulated Trafficking Kinetics of Epithelial Na+ Channels (ENaC) in Renal Epithelial Cells: Analysis Using a Mathematical Model. Cell Physiol Biochem. 2018; 50(1):363-377.
DOI: 10.1159/000494012.
View
15.
Chen Y, Huang L, Qi X, Chen C
. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci. 2019; 20(20).
PMC: 6834171.
DOI: 10.3390/ijms20205007.
View
16.
Marunaka Y, Eaton D
. Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am J Physiol. 1991; 260(5 Pt 1):C1071-84.
DOI: 10.1152/ajpcell.1991.260.5.C1071.
View
17.
Marunaka Y
. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport. J Pharmacol Sci. 2014; 126(1):21-36.
View
18.
Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Taruno A
. Na homeostasis by epithelial Na channel (ENaC) and Na channel (Na): cooperation of ENaC and Na. Ann Transl Med. 2016; 4(Suppl 1):S11.
PMC: 5104600.
DOI: 10.21037/atm.2016.10.42.
View
19.
Glynn E, Thompson B, Vadrevu S, Lu S, Kennedy R, Ha J
. Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia. Endocrinology. 2015; 157(2):611-23.
PMC: 4733117.
DOI: 10.1210/en.2015-1563.
View
20.
Sasamoto K, Marunaka R, Niisato N, Sun H, Taruno A, Pezzotti G
. Analysis of Aprotinin, a Protease Inhibitor, Action on the Trafficking of Epithelial Na+ Channels (ENaC) in Renal Epithelial Cells Using a Mathematical Model. Cell Physiol Biochem. 2017; 41(5):1865-1880.
DOI: 10.1159/000471934.
View