» Articles » PMID: 34135744

Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

Overview
Specialty Neurology
Date 2021 Jun 17
PMID 34135744
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.

Citing Articles

Machine learning techniques for predicting neurodevelopmental impairments in premature infants: a systematic review.

Ortega-Leon A, Urda D, Turias I, Lubian-Lopez S, Benavente-Fernandez I Front Artif Intell. 2025; 8:1481338.

PMID: 39906903 PMC: 11788297. DOI: 10.3389/frai.2025.1481338.


Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy.

Lagace M, Montazeri S, Kamino D, Mamak E, Ly L, Hahn C Ann Clin Transl Neurol. 2024; 11(12):3267-3279.

PMID: 39543820 PMC: 11651191. DOI: 10.1002/acn3.52233.


Quantitative EEG features during the first day correlate to clinical outcome in perinatal asphyxia.

Tuiskula A, Pospelov A, Nevalainen P, Montazeri S, Metsaranta M, Haataja L Pediatr Res. 2024; 97(1):261-267.

PMID: 38745028 PMC: 11798844. DOI: 10.1038/s41390-024-03235-y.


Deep Learning for Generalized EEG Seizure Detection after Hypoxia-Ischemia-Preclinical Validation.

Abbasi H, Davidson J, Dhillon S, Zhou K, Wassink G, Gunn A Bioengineering (Basel). 2024; 11(3).

PMID: 38534490 PMC: 10968073. DOI: 10.3390/bioengineering11030217.


Networks of cortical activity show graded responses to perinatal asphyxia.

Syvalahti T, Tuiskula A, Nevalainen P, Metsaranta M, Haataja L, Vanhatalo S Pediatr Res. 2023; 96(1):132-140.

PMID: 38135725 PMC: 11258028. DOI: 10.1038/s41390-023-02978-4.


References
1.
Raurale S, Boylan G, Mathieson S, Marnane W, Lightbody G, OToole J . Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time-frequency distributions. J Neural Eng. 2021; 18(4). PMC: 8208632. DOI: 10.1088/1741-2552/abe8ae. View

2.
Stevenson N, Lauronen L, Vanhatalo S . The effect of reducing EEG electrode number on the visual interpretation of the human expert for neonatal seizure detection. Clin Neurophysiol. 2017; 129(1):265-270. DOI: 10.1016/j.clinph.2017.10.031. View

3.
Weeke L, Dix L, Groenendaal F, Lemmers P, Dijkman K, Andriessen P . Severe hypercapnia causes reversible depression of aEEG background activity in neonates: an observational study. Arch Dis Child Fetal Neonatal Ed. 2017; 102(5):F383-F388. DOI: 10.1136/archdischild-2016-311770. View

4.
Marics G, Cseko A, Vasarhelyi B, Zakarias D, Schuster G, Szabo M . Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr. 2013; 13:194. PMC: 4222766. DOI: 10.1186/1471-2431-13-194. View

5.
Ter Horst H, Brouwer O, Bos A . Burst suppression on amplitude-integrated electroencephalogram may be induced by midazolam: a report on three cases. Acta Paediatr. 2004; 93(4):559-63. DOI: 10.1080/08035250410022882. View