» Articles » PMID: 34134975

Monopolar and Dipolar Relaxation in Spin Ice HoTiO

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Jun 17
PMID 34134975
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Ferromagnetically interacting Ising spins on the pyrochlore lattice of corner-sharing tetrahedra form a highly degenerate manifold of low-energy states. A spin flip relative to this "spin-ice" manifold can fractionalize into two oppositely charged magnetic monopoles with effective Coulomb interactions. To understand this process, we have probed the low-temperature magnetic response of spin ice to time-varying magnetic fields through stroboscopic neutron scattering and SQUID magnetometry on a new class of ultrapure HoTiO crystals. Covering almost 10 decades of time scales with atomic-scale spatial resolution, the experiments resolve apparent discrepancies between prior measurements on more disordered crystals and reveal a thermal crossover between distinct relaxation processes. Magnetic relaxation at low temperatures is associated with monopole motion through the spin-ice vacuum, while at elevated temperatures, relaxation occurs through reorientation of increasingly spin-like monopolar bound states. Spin fractionalization is thus directly manifest in the relaxation dynamics of spin ice.

Citing Articles

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Reeder T, Titum P, Kindervater J, Stewart V, Ye Q, Rodriguez-Rivera J Proc Natl Acad Sci U S A. 2025; 122(1):e2415300121.

PMID: 39746040 PMC: 11725827. DOI: 10.1073/pnas.2415300121.


Dichotomous dynamics of magnetic monopole fluids.

Hsu C, Takahashi H, Jerzembeck F, Dasini J, Carroll C, Dusad R Proc Natl Acad Sci U S A. 2024; 121(21):e2320384121.

PMID: 38743620 PMC: 11127013. DOI: 10.1073/pnas.2320384121.


Persistent dynamic magnetic state in artificial honeycomb spin ice.

Guo J, Ghosh P, Hill D, Chen Y, Stingaciu L, Zolnierczuk P Nat Commun. 2023; 14(1):5212.

PMID: 37626129 PMC: 10457338. DOI: 10.1038/s41467-023-41003-4.

References
1.
Azuah R, Kneller L, Qiu Y, Tregenna-Piggott P, Brown C, Copley J . DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data. J Res Natl Inst Stand Technol. 2016; 114(6):341-58. PMC: 4646530. DOI: 10.6028/jres.114.025. View

2.
Feng Y, Ancona-Torres C, Rosenbaum T, Reiter G, Price D, Courtens E . Quantum and classical relaxation in the proton glass. Phys Rev Lett. 2006; 97(14):145501. DOI: 10.1103/PhysRevLett.97.145501. View

3.
SALA G, Gutmann M, Prabhakaran D, Pomaranski D, Mitchelitis C, Kycia J . Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores. Nat Mater. 2014; 13(5):488-93. DOI: 10.1038/nmat3924. View

4.
Jaubert L, Holdsworth P . Magnetic monopole dynamics in spin ice. J Phys Condens Matter. 2011; 23(16):164222. DOI: 10.1088/0953-8984/23/16/164222. View

5.
Fennell T, Deen P, Wildes A, Schmalzl K, Prabhakaran D, Boothroyd A . Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science. 2009; 326(5951):415-7. DOI: 10.1126/science.1177582. View